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Expanding the deep-learning model to diagnosis LVNC: limitations and trade-offs
G. Bernabé a, P. González-Férez a, J. M. García a, G. Casas b and J. González-Carrillo c

aComputer Engineering Department, University of Murcia, Murcia, Spain; bCardiology, Hospital Universitari Vall d’Hbron, Barcelona, Spain; 
cCardiology, Hospital Virgen de la Arrixaca, Murcia, Spain

ABSTRACT
Hyper-trabeculation or non-compaction in the left ventricle of the myocardium (LVNC) is a recently 
classified form of cardiomyopathy. Several methods have been proposed to quantify the trabeculae 
accurately in the left ventricle, but there is no general agreement in the medical community to use 
a particular approach. In the previous work, we proposed DL-LVTQ, a deep-learning approach for left 
ventricular trabecular quantification based on a U-Net CNN architecture. In this work, we have extended 
and adapted DL-LVTQ to cope with patients with different particularities and cardiomyopathies. Patient 
images were taken from different scanners and hospitals. We have modified and adapted the U-Net 
convolutional neural network to account for the different particularities of a heterogeneous group of 
patients with multiple cardiomyopathies and inherited cardiomyopathies. The inclusion of new groups of 
patients has increased the accuracy, specificity and Kappa values while maintaining the sensitivity of the 
proposed method. Therefore, a better-prepared diagnosis tool is ready for various cardiomyopathies with 
different characteristics. Cardiologists have considered that 98.9% of the evaluated outputs are verified 
clinically for diagnosis. Therefore, the high precision to segment the different cardiac structures allows us 
to make a robust diagnostic system objective and faster, decreasing human error and time spent.
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1. Introduction

According to the World Health Organization reports (World 
Health Organization2022 2022; Mc Namara et al. 2019), cardio-
vascular diseases are one of the leading causes of death glob-
ally, causing about 32% of all deaths worldwide. Among 
cardiovascular diseases, Left Ventricular Non-Compaction 
(LVNC) is a recently classified form of cardiomyopathy charac-
terised by abnormal trabeculations or non-compacted tissue in 
the left ventricle cavity (Towbin et al. 2015), that can be found 
in association with other cardiomyopathies (Udeoji et al. 2013; 
Arbustini et al. 2014; Biagini et al. 2006).

Several methods based on magnetic resonance imaging 
(MRI) have been proposed to accurately quantify the trabeculae 
in the left ventricle (LV) of the myocardium (Jacquier et al. 2010; 
Captur et al. 2013, 2014; Choi et al. 2016; Bernabé et al. 2017). 
However, there is a disagreement in the cardiology community 
to determine a universal standard accompanied by excessive 
time to obtain the surfaces manually and the subjectivity of the 
cardiologist to carry it out. An understandable measure to 
diagnose this cardiomyopathy is to calculate the percentage 
of the trabecular volume to the total volume of the non- 
compacted wall of the left ventricle (VT%).

In the last decade, Deep Neural Networks (DNNs) have 
become extremely popular, and one of the main methods of 
modern Artificial Intelligence (AI) (Sze et al. 2017). DNNs are 
widely used in many domains, and the number of applications 
that use them has significantly increased. DNNs are employed 
in many scientific fields, such as image recognition, speech 
recognition, or autonomous vehicles, and other medical areas, 

such as cancer detection or protein folding prediction. In most 
of these domains, DNNs can outperform human capabilities 
thanks to their ability to perform high-level abstractions from 
large datasets (Sze et al. 2017).

In fact, several works have recently proposed an automatic 
solution based on deep learning (DL) techniques to determine 
the left ventricle volume through MRI (Litjens et al. 2017; Chen 
et al. 2020), a crucial issue in assessing cardiac diseases. In 
addition, by using high-performance computing, recent pub-
lications exploit various possibilities of deep learning to seg-
ment the left and the right ventricle (Pérez-Pelegrí et al. 2021; 
Penso et al. 2021; Li et al. 2021). Moreover, Bartoli et al. (2020) 
have proposed a deep learning framework to estimate LVNC 
based on a DenseNet convolutional neural network (CNN) 
architecture; however, the trabeculae area is not assessed 
with enough precision.

Our research group has worked on this topic intensively. In 
previous works, we proposed a semi-automatic software 
(QLVTHC) (Bernabé et al. 2020, 2021) and an automatic tool 
(SOST) ([Bernabé et al. 2018]) that delineate segmentations of 
the endocardium border and trabecular masses on cardiovas-
cular magnetic resonances (CMR). Both proposals were based 
on traditional computer vision techniques. Lastly, we have 
proposed an automatic tool called Deep Learning for Left 
Ventricular Trabecular Quantification (DL-LVTQ) based on the 
usage of Convolutional Neural Networks (CNNs) (Rodríguez-de- 
Vera et al. 2022). In particular, this proposal uses as CNN model 
the well-known U-Net architecture (Ronneberger et al. 2015) 
that provides fast and precise segmentation of images. DL- 
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LVTQ has been able to accurately segment the endocardium 
border and trabeculae and estimate the level of hyper- 
trabeculation to determine the diagnosis of LVNC. This work 
has been carried out on 277 patients with hypertrophic cardi-
omyopathy (HCM).

In this paper, we ask whether this model could be extended 
to determine the quantification of trabeculae and the diagnosis 
of LVNC in patients with different types of cardiomyopathies (or 
multiples cardiomyopathies), which CMR were taken from dif-
ferent scanners and hospitals.

The main contributions of this paper are the following:

● Show in the LVNC diagnosis case the limitations of deep 
learning models and explain their causes.

● Modify and adapt our previous U-Net CNN architecture to 
train DL-LVTQ with images collected at different hospitals 
and several scanners with various cardiomyopathies.

● Validate the new proposal by statistical methods and 
a new group of medical doctors that endorse our experi-
mental results.

2. Materials and methods

2.1. Hyper-trabeculation quantification in the left 
ventricle

Due to the continuing discrepancy in the medical community 
in determining the level of left ventricular trabeculation and the 
diagnosis of LVNC, we made a semi-automatic proposal called 
QLVTHC (Bernabé et al. 2017), and an automatic tool called 
SOST (Bernabé et al. 2018) to help them.

The proposed method aims to segment the different con-
tours of short-axis cardiac MRI in two stages. Firstly, it detects 
three different shapes of the left ventricle: the compacted 
external layer, the trabecular zone and the left ventricle cavity. 
An example with the three contours detected is shown in 
Figure 1. In the second stage, the area of the trabecular zone 
and the compacted zone are calculated. Then, the proportion 
of the trabecular area to the size of the compacted zone for all 
slices of a patient is obtained. Once all areas of a patient are 
calculated, the trabecular and compacted volumes are 
obtained by aggregating the information of all slices.

In this way, the percentage of the trabecular volume to the 
total volume of the external wall of the left ventricle (VT%) is 
evaluated according to Equation 1: 

VT% ¼ 100 �
Trab: volume

Trab: volumeþ Compacted volume
½%� (1) 

The computation of the VT% has been performed by adding up 
the areas obtained for each of the individual slices, as was 
already computed previously in Bernabé et al. (2018), taking 
into account that the slice thickness and interslice spacing are 
the same for all the slices of a specific patient.

To perform a diagnosis, high values of this metric have been 
used as a cut-off point or indicator of LVNC (Jacquier et al. 2010; 
Bernabé et al. 2017, 2018). In fact, in the tool QLVTHC, we 
proposed a validated threshold of 27.4% to differentiate 

between patients with LVNC and healthy patients (Bernabé 
et al. 2017).

2.2. The DL-LVTQ approach

In our previous work (Rodríguez-de-Vera et al. 2022), we have 
selected a 2D U-Net-like CNN based on the well-known U-Net 
(Ronneberger et al. 2015), from among other networks 
(Rodríguez-de-Vera et al. 2021), because it provides the best 
performance to the segmentation of the three contours in the 
left ventricle.

A U-Net architecture contains a symmetric encoder and deco-
der pathway, with skip connections between the corresponding 
layers. The context information is encoded in the down-sampling 
path and transferred with skip connections to the up-sampling 
path to decode feature-map and the segmentation maps.

This U-Net architecture was trained on 2D short-axis mag-
netic resonance imaging to segment the left ventricle’s internal 
cavity, external wall and trabecular tissue, obtaining the follow-
ing numbers for 25 test images: the average and standard 
deviation of the Dice coefficient for the internal cavity, external 
wall and trabeculae were 0:96� 0:00, 0:89� 0:00 and 
0:84� 0:00, respectively. Besides, to validate the diagnosis, 
two cardiologists visually graded the outputs generated auto-
matically by DL-LVTQ according to Gibson’s scale (Gibson et al.  
2004; Zaid et al. 2008; Bernabé et al. 2015), over a set of 25 
patients and 99.5% of the slices were determined without 
diagnostically relevant issues, that is, the segmentation in inter-
nal cavity, external wall and trabecular tissue was visually cor-
rect. Note that using Gibson’s scale, the outputs generated 
were visually graded from 1 to 5. A value higher than or equal 
to 4.0 indicates that the segmentation does not represent 
diagnostically significant differences.

Figure 1. Segmentation of left ventricle, highlighting the external layer (green), 
the left ventricle cavity (blue) and the trabecular zone or non-compacted area 
(yellow).
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In this paper, we explore the possibility of using the DL- 
LVTQ approach for diagnosing new images that have not 
been seen before. Deep learning-based techniques some-
times struggle to extract the essential features of images, 
which can lead to good accuracy for learning images but 
lower scores for test images (known as the over-fitting pro-
blem). In a previous paper (Rodríguez-de-Vera et al. 2022), we 
performed a five-fold cross-validation process, dividing the 
image dataset into five equal-sized folds. One of the folds 
was used as the test set, while the model was trained on the 
remaining four folds, which were split into training-validation 
sets with an 80–20% ratio. It is important to note that the 
training, validation and test sets were defined based on 
individual patients. It is essential to note that the training, 
validation and test sets were defined based on individual 
patients.

However, we were concerned regarding the dataset, as all 
the patients (277, which has a mean of 7 images per patient) 
suffered from the same cardiomyopathy. Therefore, we 
extended our original working dataset into three popula-
tions: the original P group (augmented with 16 new patients, 
therefore the P group has 293 patients), the X group and the 
H group (see Section 2.4 for more details on these popula-
tions). Table 1 gives our new results on diagnosing (inferen-
cing) different populations P, X and H, showing the mean 
and standard deviation of the Dice coefficients for the three 
contours. The model trained individually on the set 
P inferences patients of populations X and H with 
a significant drop in the Dice coefficients reaching 0.70 in 
the trabecular zone for patients belonging to H, causing 
difficulties in reconstructing some slices. The average Dice 
value for the different contours decreases to 0.84 and 0.80 
for patients of sets X and H, respectively. Therefore, the 
neural network model training with images from the 
P populations does not obtain a good generalisation for 
patients from other populations.

2.3. Neural network architecture

After achieving those results, we looked for reasons that could 
explain them.

The first point was the image quality. Input images that 
conform to the ground-truth delineation were stored at hospi-
tal computers with low resolution (128� 128 pixels, 92� 92 
pixels and sometimes could decrease to 64� 64 pixels) to save 
storage space on their hard disks. We realised that image size is 
dragging a fundamental problem that limits the perfect recon-
struction of the output images. Trying to overcome this issue, 
we tuned the QLVTHC tool to generate an output image size of 
512� 512 pixels to avoid an excessive loss of ground-truth 

information. Note that we do not apply any other pre- 
processing to the images.

Afterwards, we elaborated on a better neural network archi-
tecture to cope with this problem. Based on our previous 
research on evaluating different networks (Rodríguez-de-Vera 
et al. 2021), we decided to continue using a U-Net-like network. 
Then, we have reconfigured the U-Net in the same way as in 
(Rodríguez-de-Vera et al. 2022), but the image size of the 
single-channel inputs is 512� 512 pixels (to match the 
QLVTHC tool output). Therefore, the number of steps to encode 
and decode has been increased adequately.

In each step of the down-sampling path (encode phase), 
which is formed by seven levels, a convolutional block com-
posed of two 3� 3 convolutions with batch normalisation and 
activations with the rectified linear unit (ReLU) is followed by 
a max-pooling operation with size 2� 2 and stride of 2. The 
number of feature maps is doubled in each down-sampling 
step. A convolution block is used in the bottom layer to link the 
down-sampling to the up-sampling path, and a bilinear inter-
polation is implemented in the up-sampling path instead of up- 
convolution (used in the original U-Net design). Identically to 
the encoding, in the decode phase (up-sampling path), a series 
of bilinear interpolation and convolutional blocks are repeated 
to reach the final convolution layer.

The final convolution layer includes a softmax activation 
function to obtain the output segmentation maps in four 
classes: the left ventricle cavity, the external layer, the trabecu-
lar zone and the background. The final segmentation maps also 
have a size of 512� 512 pixels. Figure 2 shows the architecture 
diagram used in our research.

For simplicity, we apply a 2D segmentation to the input 
slices of the network. We apply Z-score standardisation and 
we perform data augmentation by applying random rotations 
of 90, 180 and 270 degrees with a 0.25 probability. As a loss 
function, we use a linear combination of two components: 
Lovász-Softmax loss ([Berman et al. 2018]) and weighted binary 
cross-entropy loss. We also apply the Rectified Adam (RAdam) 
optimiser (Liu et al. 2020) and a fivefold cross-validation based 
on a threshold of 27.4% previously described in Section 2.1. We 
made these selections based on our previous work (Rodríguez- 
de-Vera et al. 2022).

2.4. Populations

We have compounded a dataset consisting of three groups of 
patients:

(1) The set labelled P has 293 patients diagnosed with 
hypertrophic cardiomyopathy.

(2) The set labelled X has 58, unclassifiable patients with 
different cardiomyopathies diagnosed as non- 

Table 1. Mean %(� standard deviation across the fivefolds) of the Dice coefficient for the compacted external layer 
(CEL), the left ventricle cavity (LVC), the trabecular zone (TZ), and the average of the three contours to inference on 
different populations.

Population Dice CEL Dice LVC Dice TZ Average Dice

P on P 0:89� 0:10 0:94� 0:10 0:83� 0:15 0:89� 0:09
X on P 0:82� 0:16 0:92� 0:15 0:78� 0:19 0:84� 0:15
H on P 0:83� 0:13 0:88� 0:13 0:70� 0:21 0:80� 0:13
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compacted cardiomyopathy, RV (right ventricular) or LV 
(left ventricular) arrhythmogenic cardiomyopathy, DCM 
(dilated cardiomyopathy), HCM (Hypertrophic 
Cardiomyopathy), i.e. multiple cardiomyopathies, and 
inherited cardiomyopathies. Therefore, medical specia-
lists classified these patients as having more than one 
heart disease.

(3) The set labelled H has 28 patients with previously diag-
nosed LVNC cardiomyopathy meeting Petersen’s criteria 
Petersen et al. (2005).

The population has been selected from an inherited cardio-
myopathy clinic. A good-quality MRI in the first test was 
acquired in the short axis.

The MRI images are obtained at three different hospitals: 
Virgen de la Arrixaca of Murcia (HVAM), Mesa del Castillo of 
Murcia (HMCM) and Universitari Vall d’Hebron of Barcelona 
(HUVHB). HVAM manages two 1.5 T scanners, Philips and 
General Electric, with acquisition matrices of 256� 256 pixels 
and 224� 224 pixels and pixel spacing of 1:5� 1:5� 8mm and 
1:75� 1:75� 8mm, respectively. HMCM possesses the same 
General Electric model scanner as HVAM. HUVHB has a 1.5 
scanner Avanto of Siemens, where the acquisition matrix is 
224� 224 pixels. The LV function is determined with balanced 
steady-state free precision (b-SSFP) sequences, where the 

repetition interval is established to 3.8 ms for HMCM and 
HUVHB, whereas HVAM uses 3.3 ms. Other parameters like 
echo time, flip angle, echo train length, slice thickness, slice 
gap and phases are fixed to 1.7 ms, 60o, 23, 8 mm, 2 mm and 20 
phases for all scanners. All patients have been monitored in 
apnoea, in synchronisation with the ECG, and without 
a contrast agent.

In short, the final dataset comprises 3044 slices of 379 
patients. The number of patients with LVNC is 223. The number 
of slices per patient ranges from 1 to 14; the median and the 
mean are seven slices per patient.

3. Results and discussion

3.1. Training with all the populations

We started by training our modified neural network 
described in Section 2.3 with mixed images from different 
populations. Table 2 describes the obtained inference 
results when training with images from the P and 
X populations (P+X in the table) and when training with 
images from all populations (P+X+H in the table). We report 
the mean and standard deviation of the Dice coefficients for 
the three contours and the average Dice, split by patients 
belonging to populations P, X and H.

Figure 2. Architecture of the U-Net segmentation network in this research. Each blue box corresponds to a multi-channel feature map.

Table 2. Mean %(� standard deviation across the fivefolds) of the Dice coefficient for the compacted external layer 
(CEL), the left ventricle cavity (LVC), the trabecular zone (TZ) and the average of the three contours to inference on 
different populations.

Population Dice CEL Dice LVC Dice TZ Average Dice

P on P+X 0:89� 0:10 0:94� 0:10 0:84� 0:15 0:89� 0:09
X on P+X 0:83� 0:17 0:93� 0:16 0:79� 0:21 0:85� 0:16
H on P+X 0:84� 0:12 0:90� 0:12 0:73� 0:20 0:82� 0:13
P on P+X+H 0:89� 0:09 0:94� 0:09 0:84� 0:14 0:89� 0:09
X on P+X+H 0:84� 0:14 0:93� 0:14 0:80� 0:18 0:86� 0:13
H on P+X+H 0:86� 0:09 0:92� 0:10 0:79� 0:16 0:86� 0:09
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As we can see, when the network model is trained with P and 
X populations (P+X), the Dice coefficients improve concerning 
those obtained with population P (shown in Table 1). However, 
inferences for patients in the H group remain a bit lower. For 
example, the Dice coefficient of the trabecular zone and the 
average Dice value are fixed at 0.73 and 0.82, respectively. 
Finally, when the network model is trained with P, X and 
H populations (P+X+H), the results are much better, reaching 
an average Dice value of 0.86 to infer both a patient belongs to 
X or H. Therefore, this whole model, in which several patients 
with different characteristics of X and H are added to the initial 
P population, helps to solve and reinforce the model, making it 
more robust and prepared to infer patients with distinct heart 
diseases from different hospitals.

Table 3 completes the previous results from our modified 
neural network. This Table reports the training results for the 
mean and standard deviation of the Dice coefficients for the 
compacted external layer, the trabecular zone and the left ven-
tricle cavity when using only images from the P population (P), 
an image mixed from the P and X population (P+X) and, finally, 
an image combined from the P, X and H population (P+X+H). As 
we can see, there is high accuracy in detecting the compacted 
external layer and the left ventricle cavity, keeping very close 
values even though new sets of patients, such as X and H, are 
included. This result shows that it is feasible to increase the 
dataset so that the network is trained for a broader spectrum 
of patients with distinct features. It is acquired with various 
machines and in separate hospitals. In addition, it is essential to 
note that the standard deviation is very low or close to zero, 
varying very slightly as new sets of patients are added, showing 
that the results are pretty robust.

Regarding the Dice coefficient for the trabecular zone, the 
obtained values are a bit lesser due to the intrinsic difficulty 
associated with this zone, formed by several separate parts, an 
aspect also experienced by cardiologists in determining this 
controversial area. Therefore, we can claim that the network 
accurately distinguishes the trabecular zone. Moreover, it is 
essential to remember that there is a limitation in achieving 
higher values for the Dice coefficients due to the low image size 
at which MRIs are stored in medical centres.

By using the neural network presented in Section 2.3 and 
taking as a reference the values obtained by the semi- 
automatic QLVTHC proposal (Bernabé et al. 2018), we compute 
the mean error and standard deviation between the VT% and 
the values obtained in our modified network model. We report 

5:01� 0:19 mm3 for the population P, 5:39� 0:90 mm3 for the 
population P+X and 5:63� 1:26 mm3 for the population P+X 
+H. Therefore, there is no significant increase in committed 
errors despite expanding the dataset with patients with differ-
ent cardiomyopathies.

3.2. Statistical evaluation

From a medical point of view, it is important to evaluate our 
modified network model statistically. Consequently, the confu-
sion matrices (based on 27.4% threshold validated by QLVTHC) 
are presented in Tables 4, 5 and 6 for populations P, P+X and P 
+X+H, respectively. In addition, Table 7 shows the accuracy, 
sensitivity, specificity and Kappa values.

As we can see, the network’s accuracy and Kappa are slightly 
increased. In contrast, the sensitivity and the specificity are also 
increased in a more significant way by including the sets X and 
H. This means we have a better-prepared network for a wide 
range of cardiomyopathies. This network allows any cardiolo-
gist to automatically obtain the inference of any patient with-
out spending considerable and disproportionate time. 
Moreover, for the complete dataset, the positive and negative 

Table 3. Mean %(� standard deviation across the fivefolds) of the Dice coefficient for the compacted external layer 
(CEL), the left ventricle cavity (LVC), the trabecular zone (TZ) and the average of the three contours for different 
populations.

Population Dice CEL Dice LVC Dice TZ Average Dice

P 0:88� 0:00 0:95� 0:00 0:83� 0:00 0:89� 0:01
P + X 0:87� 0:02 0:95� 0:01 0:83� 0:02 0:88� 0:01
P + X + H 0:86� 0:02 0:94� 0:02 0:82� 0:03 0:88� 0:02

Table 4. Confusion matrix for the population P by a threshold of 27.4%.

Reference diagnosis

LVNC No LVNC Total

LVNC 145 22 167
No LVNC 24 123 147
Total 169 145 314

Table 5. Confusion matrix for the population P+X by a threshold of 27.4%.

Reference diagnosis

LVNC No LVNC Total

LVNC 193 10 203
No LVNC 39 117 156
Total 232 127 359

Table 6. Confusion matrix for the population P+X+H by a threshold of 27.4%.

Reference diagnosis

LVNC No LVNC Total

LVNC 210 13 223
No LVNC 34 122 156
Total 244 135 379

Table 7. Accuracy, sensitivity, specificity and Kappa values for different populations.

Population Accuracy Sensitivity Specificity Kappa

P 0.85 0.87 .85 .71
P + X 0.86 0.95 .92 .72
P + X + H 0.88 0.94 .90 .74
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predictive values achieve 0.94 (210=223) and 0.78 (122=156), 
respectively, improving the detection of LVNC patients and 
maintaining healthy patients against our previous proposal 
(Rodríguez-de-Vera et al. 2022).

Since the cut-off point of 27.4% was validated using the 
QLVTHC tool, it is possible that a better classification can be 
achieved by varying the threshold point using DL-QLVT. Hence, 
it is necessary to calculate receiver operating characteristics 
(ROC) curve analysis of the VT% obtained from the modified 
network to determine that the optimal cut-off point is 27.1%. 
The corresponding confusion matrix can be found in Table 8. 
The area under the ROC curve is 0.94 (95% confidence interval, 
0.91–0.96), and with a threshold of 27.1%, the accuracy, sensi-
tivity, specificity and Kappa values are 0.88, 0.96, 0.94 and 0.75, 
respectively. Therefore, the positive and negative predictive 

values achieve 0.96 (215=223) and 0.77 (120=156), respectively, 
further improving the detection of LVNC patients and very 
slightly worsening the detection of healthy patients.

3.3. Medical validation

We have conducted an evaluation of the outputs that were 
automatically generated by the updated DL-LVTQ. This evalua-
tion was carried out by two cardiologists who work in different 
hospitals. Our aim was not to introduce any subjective assess-
ment of the images, as it would contradict the purpose of the 
proposed automatic tool. However, it is essential that different 
cardiologists who were not involved in collecting the images 
can detect any errors.

To be more specific, these two cardiologists have scored all 
slices of patients belonging to population H. They have deter-
mined that 98.9% of the slices of H-patients are entirely valid 
from a medical point of view, with a score equal to or higher 
than 3.5, or without significant differences to make a diagnosis.

For example, Figure 3 shows the segmentations (green 
indicates the compacted external layer of the left ventricle 
cavity and yellow the trabecular zone) for one patient, where 
two cardiologists scored a 5 (exact match) or 4.5 on the 

Table 8. Confusion matrix for the population P+X+H by a threshold of 27.1%.

Reference diagnosis

LVNC No LVNC Total

LVNC 215 8 223
No LVNC 36 120 156
Total 215 128 379

Figure 3. Output slices for the patient H15. Green indicates the compacted external layer of the left ventricle cavity, and yellow is the trabecular zone.
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different slices. However, fewer slices of H patients have not 
been rebuilt correctly, so it could be advisable to increase the 
number of such patients in the dataset, causing a double 
benefit that will imply an improvement of the Dice coeffi-
cient for the different contours and better image 
reconstruction.

The scores given by two different cardiologists showed 
a mean difference of 0:58� 0:51 (13:1%� 11:8%) in terms 
of inter-observer variability. This discrepancy is due to the 
subjectivity of the cardiologists from different hospitals. 
The main source of disagreement is observed in slices 
near the apical or basal ends, where the accuracy of the 
network is lower due to the small size of apical-end slices 
or the difficulty in delimiting borders in the adjacent cav-
ities for basal-end slices. This fact has been reported pre-
viously in Rodríguez-de-Vera et al. (2022) and Bernard et al. 
(2018).

4. Conclusions and future work

In a previous paper, we presented DL-LVTQ (Rodríguez-de-Vera 
et al. 2022). DL-LVTQ was a deep-learning left ventricular trabe-
cular quantification approach based on a U-Net CNN architec-
ture. DL-LVTQ was ready to process and determine the presence 
of LVNC in patients with hypertrophic cardiomyopathy.

From a medical point of view, the results generated by DL- 
LVTQ do not present notable differences for making 
a diagnosis in most cases, which favours inter-hospital colla-
boration and research in difficult-to treat patients with multi-
ple cardiomyopathies.

In this research paper, we have made modifications to the 
U-Net and customised it to handle the unique characteristics of 
three groups of patients who suffer from different types of 
cardiomyopathies simultaneously and inherited cardiomyopa-
thies. The images used in this study were obtained from various 
hospitals, captured by multiple scanners and adjusted to fit into 
the new data set.

Our modified network model shows remarkable accuracy in 
segmenting the endocardium border and trabeculae, and it 
performs better than the previous manual, semi-automatic 
and automatic proposals with robustness and speed. This 
means that cardiologists can obtain the inference of any 
patient automatically, without significant effort and personal 
bias. Additionally, we can assert that the system is equipped 
and adaptable to handle a diverse group of patients.

In summary, using deep learning techniques to automati-
cally diagnose LNVC cardiomyopathy from MRI images is 
a complex and challenging process. However, we believe 
that our results are promising and worthy. While there is 
still room for improvement, an automated diagnosis system 
will provide cardiologists with a fast and reliable way to 
determine LVNC without spending a significant amount of 
time. This will help eliminate human error and subjectivity, 
and facilitate the evolution of LVNC and other heart diseases. 
Collaborations between hospitals and research groups will 
enable the diagnosis of unclassified patients with multiple 
cardiomyopathies. Ultimately, this approach will benefit the 
patients the most.
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