Por favor, use este identificador para citar o enlazar este ítem:
https://doi.org/10.3390/jcm12247633


Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Baron Yusti, Jaime Rafael | - |
dc.contributor.author | Bernabé García, Gregorio | - |
dc.contributor.author | González Férez, Pilar | - |
dc.contributor.author | García Carrasco, José Manuel | - |
dc.contributor.author | Casas, Guillem | - |
dc.contributor.author | González-Carrillo, Josefa | - |
dc.date.accessioned | 2024-01-30T11:26:01Z | - |
dc.date.available | 2024-01-30T11:26:01Z | - |
dc.date.created | 2023-10-30 | - |
dc.date.issued | 2023-12-12 | - |
dc.identifier.citation | Journal of Clinical Medicine, volumen 12, número 24, año 2023 | es |
dc.identifier.uri | http://hdl.handle.net/10201/138134 | - |
dc.description | ©2023. This manuscript version is made available under the CC-BY 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ This document is the Published Manuscript version of a Published Work that appeared in final form in Journal of Clinical Medicine. To access the final edited and published work see https://doi.org/10.3390/jcm12247633 | es |
dc.description.abstract | Accurate diagnosis of Left Ventricular Noncompaction Cardiomyopathy (LVNC) is critical for proper patient treatment but remains challenging. This work improves LVNC detection by improving left ventricle segmentation in cardiac MR images. Trabeculated left ventricle indicates LVNC, but automatic segmentation is difficult. We present techniques to improve segmentation and evaluate their impact on LVNC diagnosis. Three main methods are introduced: (1) using full 800 × 800 MR images rather than 512 × 512; (2) a clustering algorithm to eliminate neural network hallucinations; (3) advanced network architectures including Attention U-Net, MSA-UNet, and U-Net++.Experiments utilize cardiac MR datasets from three different hospitals. U-Net++ achieves the best segmentation performance using 800 × 800 images, and it improves the mean segmentation Dice score by 0.02 over the baseline U-Net, the clustering algorithm improves the mean Dice score by 0.06 on the images it affected, and the U-Net++ provides an additional 0.02 mean Dice score over the baseline U-Net. For LVNC diagnosis, U-Net++ achieves 0.896 accuracy, 0.907 precision, and 0.912 F1-score outperforming the baseline U-Net. Proposed techniques enhance LVNC detection, but differences between hospitals reveal problems in improving generalization. This work provides validated methods for precise LVNC diagnosis. | es |
dc.format | application/pdf | es |
dc.format.extent | 15 | es |
dc.language | eng | es |
dc.publisher | Federico Guerra | es |
dc.relation | TED2021-129221B-I00 APLICACIÓN DE LA COMPUTACIÓN EFICIENTE DE ALTO RENDIMIENTO CON TÉCNICAS AVANZADAS DE INTELIGENCIA ARTIFICIAL PARA EL DIAGNÓSTICO DE ENFERMEDADES EN SISTEMAS HETEROGÉNEOS ENTIDAD: Ministerio de Ciencia e Inovación/AGENCIA ESTATAL DE INVESTIGACIÓN y “European Union NextGenerationEU/PRTR” COMIENZO: 01/12/2022, FIN: 30/11/2024 | es |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | es |
dc.rights | info:eu-repo/semantics/openAccess | - |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Left ventricular non-compaction diagnosis | es |
dc.subject | Cardiomyopathies | es |
dc.subject | Convolutional neural networks | es |
dc.subject | MRI Image segmentation | es |
dc.subject.other | CDU::0 - Generalidades.::00 - Ciencia y conocimiento. Investigación. Cultura. Humanidades.::004 - Ciencia y tecnología de los ordenadores. Informática. | es |
dc.title | Improving a Deep Learning Model to Accurately Diagnose LVNC | es |
dc.type | info:eu-repo/semantics/article | es |
dc.relation.publisherversion | https://www.mdpi.com/2077-0383/12/24/7633/pdf?version=1702432108 | es |
dc.identifier.doi | https://doi.org/10.3390/jcm12247633 | - |
dc.contributor.department | Departamento de Ingeniería y Tecnología de Computadores | - |
Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
jcm-12-07633-v2.pdf | 3,06 MB | Adobe PDF | ![]() Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons