Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.3390/jcm12247633

Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorBaron Yusti, Jaime Rafael-
dc.contributor.authorBernabé García, Gregorio-
dc.contributor.authorGonzález Férez, Pilar-
dc.contributor.authorGarcía Carrasco, José Manuel-
dc.contributor.authorCasas, Guillem-
dc.contributor.authorGonzález-Carrillo, Josefa-
dc.date.accessioned2024-01-30T11:26:01Z-
dc.date.available2024-01-30T11:26:01Z-
dc.date.created2023-10-30-
dc.date.issued2023-12-12-
dc.identifier.citationJournal of Clinical Medicine, volumen 12, número 24, año 2023es
dc.identifier.urihttp://hdl.handle.net/10201/138134-
dc.description©2023. This manuscript version is made available under the CC-BY 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ This document is the Published Manuscript version of a Published Work that appeared in final form in Journal of Clinical Medicine. To access the final edited and published work see https://doi.org/10.3390/jcm12247633es
dc.description.abstractAccurate diagnosis of Left Ventricular Noncompaction Cardiomyopathy (LVNC) is critical for proper patient treatment but remains challenging. This work improves LVNC detection by improving left ventricle segmentation in cardiac MR images. Trabeculated left ventricle indicates LVNC, but automatic segmentation is difficult. We present techniques to improve segmentation and evaluate their impact on LVNC diagnosis. Three main methods are introduced: (1) using full 800 × 800 MR images rather than 512 × 512; (2) a clustering algorithm to eliminate neural network hallucinations; (3) advanced network architectures including Attention U-Net, MSA-UNet, and U-Net++.Experiments utilize cardiac MR datasets from three different hospitals. U-Net++ achieves the best segmentation performance using 800 × 800 images, and it improves the mean segmentation Dice score by 0.02 over the baseline U-Net, the clustering algorithm improves the mean Dice score by 0.06 on the images it affected, and the U-Net++ provides an additional 0.02 mean Dice score over the baseline U-Net. For LVNC diagnosis, U-Net++ achieves 0.896 accuracy, 0.907 precision, and 0.912 F1-score outperforming the baseline U-Net. Proposed techniques enhance LVNC detection, but differences between hospitals reveal problems in improving generalization. This work provides validated methods for precise LVNC diagnosis.es
dc.formatapplication/pdfes
dc.format.extent15es
dc.languageenges
dc.publisherFederico Guerraes
dc.relationTED2021-129221B-I00 APLICACIÓN DE LA COMPUTACIÓN EFICIENTE DE ALTO RENDIMIENTO CON TÉCNICAS AVANZADAS DE INTELIGENCIA ARTIFICIAL PARA EL DIAGNÓSTICO DE ENFERMEDADES EN SISTEMAS HETEROGÉNEOS ENTIDAD: Ministerio de Ciencia e Inovación/AGENCIA ESTATAL DE INVESTIGACIÓN y “European Union NextGenerationEU/PRTR” COMIENZO: 01/12/2022, FIN: 30/11/2024es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacionales
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectLeft ventricular non-compaction diagnosises
dc.subjectCardiomyopathieses
dc.subjectConvolutional neural networkses
dc.subjectMRI Image segmentationes
dc.subject.otherCDU::0 - Generalidades.::00 - Ciencia y conocimiento. Investigación. Cultura. Humanidades.::004 - Ciencia y tecnología de los ordenadores. Informática.es
dc.titleImproving a Deep Learning Model to Accurately Diagnose LVNCes
dc.typeinfo:eu-repo/semantics/articlees
dc.relation.publisherversionhttps://www.mdpi.com/2077-0383/12/24/7633/pdf?version=1702432108es
dc.identifier.doihttps://doi.org/10.3390/jcm12247633-
dc.contributor.departmentDepartamento de Ingeniería y Tecnología de Computadores-
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
jcm-12-07633-v2.pdf3,06 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons