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Abstract: Accurate diagnosis of Left Ventricular Noncompaction Cardiomyopathy (LVNC) is critical
for proper patient treatment but remains challenging. This work improves LVNC detection by
improving left ventricle segmentation in cardiac MR images. Trabeculated left ventricle indicates
LVNC, but automatic segmentation is difficult. We present techniques to improve segmentation
and evaluate their impact on LVNC diagnosis. Three main methods are introduced: (1) using full
800 × 800 MR images rather than 512 × 512; (2) a clustering algorithm to eliminate neural network
hallucinations; (3) advanced network architectures including Attention U-Net, MSA-UNet, and
U-Net++.Experiments utilize cardiac MR datasets from three different hospitals. U-Net++ achieves
the best segmentation performance using 800 × 800 images, and it improves the mean segmentation
Dice score by 0.02 over the baseline U-Net, the clustering algorithm improves the mean Dice score by
0.06 on the images it affected, and the U-Net++ provides an additional 0.02 mean Dice score over
the baseline U-Net. For LVNC diagnosis, U-Net++ achieves 0.896 accuracy, 0.907 precision, and
0.912 F1-score outperforming the baseline U-Net. Proposed techniques enhance LVNC detection,
but differences between hospitals reveal problems in improving generalization. This work provides
validated methods for precise LVNC diagnosis.

Keywords: left ventricular non-compaction diagnosis; cardiomyopathies; convolutional neural
networks; MRI Image segmentation

1. Introduction

Nowadays, one of the leading causes of death globally is cardiovascular diseases
that cause about 32% of all deaths worldwide [1,2]. Therefore, early detection of cardiac
anomalies is paramount for a favorable patient treatment outcome. Among these diseases,
Left Ventricular Non-Compaction Cardiomyopathy (LVNC) is a rare cardiac condition
characterized by an abnormally spongy and thickened left ventricular wall, in contrast
to the typical smooth and firm structure. The significance of LVNC lies in its potential
to induce a broad spectrum of symptoms, ranging from fatigue and shortness of breath
to the development of heart failure. Moreover, it is associated with an increased risk of
suffering from other diseases such as HCM (Hypertrophic Cardiomyopathy), DCM (Dilated
Cardiomyopathy), and ARVD (Arrhythmogenic Right Ventricular Cardiomyopathy).

Currently, there is no consensus on what is considered LVNC [3–6]. For this reason,
we commonly use Petersen’s criteria [7]. One distinctive feature of LVNC is the abundance
of trabeculae within the left ventricle. We can use the percentage of trabecular volume
(VT%) to diagnose whether or not a patient has LVNC. To do this, we choose a threshold
of VT% over which you are considered to have LVNC. In this light, QLVTHC is a fully
automatic tool that uses a threshold of 27.4% for diagnosis [8–10].
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Deep Neural Networks (DNNs) have gained immense popularity in recent years and
are now considered one of the primary methods of modern Artificial Intelligence (AI) [11].
DNNs are being utilized across various scientific domains such as image recognition, speech
recognition, autonomous vehicles, and medical research [12–15]. New automatic methods
based on DNNs have been developed to determine the left ventricle volume through
Magnetic Resonance Imaging (MRI) [16,17]. Recent publications also exploit various
possibilities of deep learning to segment the left and the right ventricle by using high-
performance computing [18–22]. In particular, DL-LVTQ is a new automatic proposal based
on a U-Net architecture [23] to diagnose LVNC. These new tools offer several advantages
for medical professionals and healthcare institutions:

• Efficiency: automated systems can quickly analyze a large dataset, allowing clinicians
to focus on complex cases and treatment plans.

• Standardization: the use of machine learning algorithms ensures a uniform criterion
for diagnosis, mitigating the risk of human error and subjective bias.

• Accessibility: such automated tools make expert-level diagnostics more readily avail-
able, particularly in settings with limited access to specialized medical professionals.

• Continual Learning: These systems can adapt and improve their diagnostic capabilities
over time by learning from new data, which are especially beneficial for identifying
atypical or rare cases.

• Resource Allocation: Automation can free up medical resources, allowing healthcare
providers to allocate their focus and finances more effectively.

It is important to point out that LVNC is a rare disease (8–12 individuals per million
inhabitants), and having the ability to diagnose the condition automatically upon leaving
the MRI machine is invaluable. This not only enables the detection of incidental cases that
were not the original focus of the MRI but also expedites the identification of cases that
were intentionally being investigated. As a result, it streamlines the allocation of healthcare
professionals’ time, frequently wasted on excluding this rare condition from the list of
potential diagnoses.

Various methodologies, such as cardiac volume quantification using U-Net [24], along
with “Active Shape Models” in ultrasound imaging [25], illustrate the breadth of current
techniques. Further amplifying this range, Ref. [26] explores the application of advanced
segmentation methods for 3D heart reconstruction.

This paper aims to improve upon the results obtained in [27] using the same database.
To achieve this, we perform the following proposals:

1. Utilize the original 800 × 800 size of the images as input for the neural net instead of
the reduced 512 × 512 size used in [27].

2. Employ a clustering algorithm to eliminate hallucinations from the U-Net output.
This clustering algorithm improves the robustness of the results by using all the
segmentations produced by the U-Net of a patient to ensure that the selected area
corresponds to the left ventricle.

3. Try out three different neural net architectures: AttU-Net, MSA-UNet, and U-Net++ [28–30].
All of them are variations of the U-Net.

4. To make the most of transfer learning, we will fine-tune each neural network to fit
each subset of the data. Since the data used for training come from distinct sources,
this approach allows us to optimize our performance for each neural net and subset
of data.

2. Materials and Methods

We aim to diagnose whether a patient has LVNC by using convulational neuronal
networks (CNNs). We diagnose LVNC by obtaining the percentage of trabecular volume:

VT% =
Trabecular volume

Trabecular volume + Compacted volume
· 100. (1)
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The output of our neural net looks like Figure 1, where we color three different zones:
External Layer (EL), Internal Cavity (IC), and Trabecular Zone (TZ) in three different colors.
Our U-Net-based proposal takes this output and calculates the VT%, giving us the access
to determine if the patient has LVNC.

Figure 1. Output slices for the patient P241 (from the test set) from the U-Net++. Green indicates
the compacted external layer of the left ventricle, yellow the trabecular zone, and light blue the
internal cavity.

Three hospitals were involved in the study—Virgen de la Arrixaca of Murcia (HVAM),
Mesa del Castillo of Murcia (HMCM), and Universitari Vall d’Hebron of Barcelona (HU-
VHB). HVAM has two scanners from Philips and General Electric, both of 1.5 T. The
acquisition matrices of the scanners are 256× 256 pixels and 224× 224 pixels with a pixel
spacing of 1.5× 1.5× 0.8 mm and 1.75× 1.75× 0.8 mm, respectively. The General Elec-
tric model scanner used by HMCM is the same as that used by HVAM. HUVHB uses a
1.5 scanner Avanto of Siemens, where the acquisition matrix is 224× 224 pixels.

The LV function is determined with balanced steady-state free precision (b-SSFP)
sequences, where the repetition interval is established to 3.8 ms for HMCM and HUVHB,
whereas HVAM uses 3.3 ms. Other parameters like echo time, flip angle, echo train length,
slice thickness, slice gap, and phases are fixed to 1.7 ms, 60◦, 23, 8 mm, 2 mm, and 20 phases,
respectively, for all scanners. All patients were monitored in apnea, in synchronization
with the ECG and without a contrast agent.

2.1. Populations

The dataset is composed of a subset obtained from HVAM, marked as P, another subset
from HMCM, marked as X, and another subset from HUVHB, marked as H. This dataset
matches the one used in [27].

A sample image of each dataset is showed in Figure 2. The differing results shown in
Table 1 are due to the fact that the P dataset has more images than X and H combined, but
also that these datasets are intrinsically different as:



J. Clin. Med. 2023, 12, 7633 4 of 15

• The set P consists of 293 patients with hypertrophic cardiomyopathy (HCM), which
involves thickening of the heart muscle.

• The set X is made up of 58 patients with various types of heart diseases, among which
HCM is also included.

• The set H consists of 28 patients diagnosed with LVNC using the Petersen criteria.

Table 1. Average (±standard deviation across the five folds) of the Dice coefficient in [27] of each test
dataset trained on P + X + H, where EL is the External Layer, IC is the Internal Cavity, and TZ is the
Trabecular Zone.

Population Dice EL Dice IC Dice TZ Average Dice

P 0.89± 0.09 0.94± 0.09 0.84± 0.14 0.89± 0.09

X 0.84± 0.14 0.93± 0.14 0.80± 0.18 0.86± 0.13

H 0.86± 0.09 0.92± 0.10 0.79± 0.16 0.86± 0.09

(a) (b) (c)
Figure 2. Sample images of each dataset: (a) P dataset, (b) X dataset, and (c) H dataset.

To use the same criteria as [27], we use exactly the same 80/20 train/test split and per-
form five-fold cross-validation on the training dataset. Table 1 shows the Dice coefficients
of each test dataset trained on P + X + H . We report the mean and standard deviation of the
test data evaluations from the five folds. Because of the large imbalance in the number of
images per hospital, we present results separately for each of the three hospitals. Otherwise,
if we aggregate the results, those from hospital P would dominate, overshadowing those
from hospitals X and H.

Moreover, it is important to note that the dataset is fully valid from a medical point of
view, as the output images of the neural network have been positively assessed by several
cardiologists in previous works [23,27].

2.2. 800 × 800 Images

In the cited U-Net study [27], images were initially upscaled to 800 × 800 at which
they were segmented. Afterward, they were resized to 512 × 512 for memory efficiency.
In order to leverage the original 800 × 800 segmentations, we propose an initial layer to
downsample images to 200 × 200, leveraging the U-Net’s existing “blocks” composed of
two 3× 3 convolutions with batch normalization and leaky ReLU activations (0.01 negative
slope). The convolutions have a stride of two, halving each dimension.

The traditional U-Net works on this 200 × 200 input and produces a 200 × 200 output.
To obtain an 800 × 800 output, we append an additional decoding layer before the final
convolution. This layer consists of two transposed convolutions, each with a stride of two,
interspersed with two UNet-like blocks, effectively resizing the image back to 800 × 800.

The complete architecture is depicted in Figure 3.
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Figure 3. Diagram of the entire 800 × 800 image neural network.

2.3. Clustering Algorithm

After analyzing the results obtained from traditional U-Net, we noticed it exhibited
hallucinations. Sometimes, it produces multiple left ventricles, the most common case
being mislabeling the right ventricle as the left ventricle. This issue occurs very occasionally
with the best networks we have obtained. Trying to solve this issue we propose a two-stage
algorithm that improves the results and makes them more robust. We next present this
two-stage algorithm.

Our first algorithm focuses on cluster generation within each image, which should
represent the left ventricle (Algorithm 1). We create a custom method inspired by K-means.
The steps are:

Algorithm 1 Cluster Generation

1. Find the three largest clusters in each image, considering any set of pixels marked as
EL, IC, or TZ connected as a cluster.

2. Examine clusters for separable IC + TZ components. If found, reassign EL pixels to
the closest new cluster.

3. If clusters fragment, merge any sub-cluster smaller than 5% of the largest cluster
with its neighboring clusters, we will consider that the neural network may have
incorrectly enclosed the IC + TZ mini-cluster.

With these clusters established, Algorithm 2 selects the most likely left ventricle cluster.
The algorithm proceeds in two passes and uses a list of ’skip’ images for ambiguous cases.

Algorithm 2 Cluster Selection

1. Find a sequence of clusters (from consecutive images) that minimizes the distance
between consecutive centroids.

2. Compute the overlap percentage for each adjacent pair in the sequence.
3. If any pair has an overlap of less than 20%, proceed to step 4; otherwise, go to step 6.
4. Calculate overlap percentages for all cluster pairs (regardless of order). Thus, for each

cluster, count how many clusters overlap with it more than 20%.
5. Add to the skip list the first image with the least valid overlaps, then return to step 1.
6. If step 6 was reached before, or there are no images to skip, proceed. Otherwise, mark

surviving images as fixed, evidence the skip list, and return to step 1.
7. Output associated cluster for each image; if marked to skip, output blank image

(Background), as we will consider that the left ventricle has not been detected.

Figure 4 presents an example of the algorithm in action. Figure 4a shows the original
output generated by the neural network, and Figure 4b shows this output overlaid with
errors marked in red. As we can see, there are several areas the network identifies as the left
ventricle that are not. Each region is marked as an independent cluster by the algorithm.
Furthermore, there is an area marked in red, but not entirely because this is the accurate
left ventricle. This part of the output is also celebrated as a cluster, and our goal with the
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algorithm is to choose this. By applying these algorithms, we obtain Figure 4c, which, as
we can see in Figure 4d, is the desired cluster and has eliminated problematic clusters.

(a) Original output (b) Original with marked errors

(c) Output with clustering (d) Output with clustering marked

Figure 4. Example of the clustering algorithm improving an image, showing in red in (b,d) the errors
of the corresponding outputs (a,c).

2.4. New Neural Net Architectures

Next, we briefly overview the the new neural networks used in this dataset.

2.4.1. Attention U-Net

The AttU-Net [28] is a U-Net with an attention mechanism shown in Figure 5. Instead
of directly concatenating encoder and decoder outputs like in traditional U-Net, we use the
attention mechanism’s output to concatenate the encoder’s output.

We obtained the attention mechanism from [31], changing the batch normalization to
instance normalization to be like our U-Net. We have also omitted the resampler as in [31].

2.4.2. MSA-UNet

This U-Net aims to be an alternative to the traditional U-Net using the same structure
but different operations. The architecture of the U-Net used in the article [29] is represented
in Figure 6. We also use this architecture but change batch normalization with instance
normalization and bilinear interpolations with transposed convolutions. These changes
are made in the various operations performed in this network: MSRB, RASM, AASPP,
and MSAM.
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Figure 5. Attention U-Net used in the article [28].

Figure 6. MSA-UNet modified from [29].

2.4.3. U-Net++

U-Net++ is a variation in the traditional U-Net that allows us to use a new training
approach. The architecture of this neural network is obtained from the article [30], as
described in the diagram in Figure 7.

Apart from all the added connections, the main difference between U-Net++ and the
traditional U-Net is the different training strategy known as deep supervision. In this
approach, the network is trained to assume that x0,j ∀j > 0 are outputs of the network
after the necessary post-processing. All these outputs are concatenated by applying an
additional 1 × 1 convolution, which, after post-processing, is the final output of the U-
Net++, also used for training.

Since we ultimately want a single output for our U-Net++, but have trained multiple
outputs, it is natural to assign weights to the relevance of each of these outputs so that
the final output is trained more strongly. Considering that our U-Net++ is like the one in
Figure 7, which has x0,j j ∈ 1, 2, 3, 4, we use the following loss function:

L = 0.25L1 + 0.25L2 + 0.5L3 + 0.75L4 + Loutput. (2)
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Figure 7. Basic architecture of U-Net++ with an additional layer for output fusion called MOST
(Multiple Side-Output Fusion) for training modified from [30].

Our primary interest is obtaining the best possible output. After this training, we
perform another round of training to refine the network, using Loutput as the loss function.

2.5. Transfer Learning

To improve the results in X and H, we fine tune the neural nets trained on the entire
dataset (P + X + H) on X and H separately. In doing so, we transfer the general knowledge
from across all hospitals to try to improve the results on both X and H. Notice that this
means that every neural net will branch into two fine-tuned neural nets.

To fine tune the Unet network, we will freeze the Encoder weights of each Unet. The
Encoder compresses the input image size while expanding the number of channels, creating
a condensed representation of the original data. It is important to note that even though
the U-Net++ network is more complex, it still has an Encoder that is formed by the path
composed of Xi,0 ∀i.

3. Results and Discussion

This section presents the influence of increasing the image size from 512 × 512 to
800 × 800 and of the proposed clustering algorithm on the results obtained by a U-Net.
Then, we provide the results achieved by the other neural net architectures (AttU-Net,
MAS-UNet, and U-Net++) and compare them with those obtained by a regular U-Net.

3.1. 800 × 800 Images and Clustering Algorithm

Using 800 × 800 images and the clustering algorithm increased the Dice coefficient,
whose values we show in Table 2.
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Table 2. Average (±standard deviation across the five folds) of five folds on the test set after applying
the clustering algorithm and after training on images of P + X + H, where EL is the External Layer, IC
is the Internal Cavity, and TZ is the Trabecular Zone.

Population Dice EL Dice IC Dice TZ Average Dice

P 0.893± 0.008 0.954± 0.003 0.852± 0.008 0.900± 0.005

X 0.861± 0.005 0.9622± 0.0018 0.830± 0.007 0.884± 0.004

H 0.864± 0.006 0.940± 0.006 0.813± 0.010 0.873± 0.006

As we can see, the net result is an overall increase of around 0.02 in the Dice coefficient.
The clustering algorithm has a much lesser impact than the average Dice coefficient as it
only affects a small number of images, and most hallucinations are slight. This is clearer in
Figure 8, where we show only the changes produced in the U-Net. Additionally, we see
that some cases with very low Dice coefficients achieve a Dice coefficient of 0. This means
the cluster was not found, possibly because the results were inferior.

Figure 8. This graph displays the changes that occurred in the U-Net due to the effects of Algorithm 2
in the five folds simultaneously. The same image can appear multiple times. The unaltered values are
shown on the “x” axis, and the results after clustering are shown on the “y” axis. Improved results
are indicated in green, whereas worsened results are shown in red. The blue line is meant to help
distinguish improvements from worsening.

On the other hand, it is important to emphasize that the vast majority of improve-
ments (green dots) are substantial, averaging around 0.06 in the Dice coefficient for the
trabecular zone. This is a significant improvement, as the benefit we gained from using
800 × 800-sized images is only around 0.02 in the Dice coefficient. Figure 8 shows that most
changes are found in the external layer. This is likely because there must be an outer layer
to have trabeculae or an internal cavity, so it is easier to have just EL than to have all three
components. Furthermore, it is relevant to point out that the hallucination issue decreases
dramatically when using the other networks, dropping from 146.6 images per fold (each
fold has 602 images) to only about 17 images per fold.

3.2. Model Comparison

To compare the results of the different neural networks, we display in Tables 3–5 the
average Dice coefficients of the five folds on the test set.

In the following tables, we refer to U-Net++ as U-Net++* after it has been trained
with the weights shown in (2). Thus, after refining it by training only with the Loutput error
function, we refer to it as U-Net++.

From Tables 3–5, it is clear that U-Net++ outperforms U-Net++* in all cases, indi-
cating that the refinement was beneficial. Furthermore, U-Net++ outperforms the other
U-Nets in datasets P and X across all categories. Interestingly, the H dataset loses in all
categories against the other U-Nets. This may indicate that its high complexity prevents it
from generalizing well to other datasets, as dataset H has the fewest images, using only
16 patients for training.
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Table 3. Evaluation on P.

Red Neuronal Dice EL Dice IC Dice TZ Average Dice

U-Net 0.893± 0.008 0.954± 0.003 0.852± 0.008 0.900± 0.005

AttUNet 0.888± 0.009 0.9542± 0.0023 0.847± 0.011 0.896± 0.007

MSA-UNet 0.906± 0.004 0.957± 0.003 0.866± 0.005 0.910± 0.004

U-Net++* 0.908 ± 0.003 0.9574 ± 0.0015 0.8670 ± 0.0023 0.9107 ± 0.0020

U-Net++ 0.9122± 0.0011 0.9592± 0.0008 0.8704± 0.0011 0.9139± 0.0006

Table 4. Evaluation on X.

Red Neuronal Dice EL Dice IC Dice TZ Average Dice

U-Net 0.861± 0.005 0.9622± 0.0018 0.830± 0.007 0.884± 0.004

AttUNet 0.854± 0.006 0.963± 0.003 0.825± 0.011 0.881± 0.005

MSA-Unet 0.874± 0.006 0.9648± 0.0016 0.850± 0.005 0.896± 0.003

U-Net++* 0.874 ± 0.007 0.9658 ± 0.0011 0.848 ± 0.005 0.896 ± 0.004

U-Net++ 0.884± 0.003 0.9672± 0.0016 0.855± 0.003 0.9019± 0.0020

Table 5. Evaluation on H.

Red Neuronal Dice EL Dice IC Dice TZ Average Dice

U-Net 0.864± 0.006 0.940± 0.006 0.813± 0.010 0.873± 0.006

AttUNet 0.847± 0.005 0.935± 0.004 0.794± 0.008 0.859± 0.005

MSA-Unet 0.878± 0.005 0.938± 0.005 0.816± 0.012 0.877± 0.006

U-Net++* 0.869 ± 0.011 0.923 ± 0.011 0.804 ± 0.012 0.8652 ± 0.010

U-Net++ 0.877± 0.008 0.928± 0.008 0.809± 0.012 0.871± 0.009

Regarding the attention mechanism-based networks (AttUNet and MSA-UNet), we
see that they behave very differently. On the one hand, the AttUNet gives results similar to
the traditional U-Net, with significant differences only in dataset H, where the traditional
U-Net performs better. This means this implementation is useless as a simpler version
outperforms it.

On the other hand, the MSA-UNet appears to be a strong competitor to U-Net++,
achieving similar results in all three datasets. However, it significantly outperforms in
dataset H. This suggests that it is better to start with the MSA-UNet when generalizing to
a new hospital. Still, once a sufficiently large database is established, the U-Net++ gains
enough traction to learn correctly.

3.3. Transfer Learning

This section aims to improve the U-Net’s results in datasets X and H, possibly equiva-
lent to P’s. Since the AttUNet performed poorly earlier, we excluded it from this analysis
and focused on the traditional U-Net, MSA-UNet, and U-Net++. By freezing the encoder
parameters and fine tuning on X (training on X and evaluating on X), we obtain Table 6.
Similarly, we obtain the results for H in Table 7.

As we can see, the improvements brought about by transfer learning in X are almost
negligible. This can be seen in comparing Tables 4 and 6, with the maximum difference
between the Dice coefficients being 0.004. On the other hand, there are significant changes in
dataset H, with the MSA-UNet’s Dice coefficient in the trabecular zone improving by 0.013.
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Table 6. Transfer learning in X after applying Algorithm 2.

Red Neuronal Dice EL Dice IC Dice TZ Dice Promedio

U-Net 0.865± 0.005 0.963± 0.0024 0.8346± 0.008 0.888± 0.005

MSA-UNet 0.877± 0.006 0.9652± 0.0016 0.849± 0.006 0.897± 0.004

U-Net++ 0.883± 0.003 0.9668± 0.0008 0.853± 0.003 0.9009± 0.0019

Table 7. Transfer learning in H after applying Algorithm 2.

Red Neuronal Dice EL Dice IC Dice TZ Dice Promedio

U-Net 0.866± 0.007 0.943± 0.006 0.819± 0.011 0.876± 0.007

MSA-UNet 0.882± 0.004 0.946± 0.004 0.828± 0.009 0.885± 0.005

U-Net++ 0.878± 0.008 0.929± 0.007 0.812± 0.011 0.873± 0.008

For this reason, we do not use the networks obtained through transfer learning to
differentiate the datasets in U-Net++ or datasets P and X in the MSA-UNet. However, we
determine dataset H for the MSA-UNet.

3.4. LVNC Detection

For LVNC detection, we use Equation (1) with a threshold of 27.4%; i.e., any patient
with a VT% higher than 27.4% is classified as having LVNC. In this section, we examine the
predictive ability of U-Net++ for LVNC, as it performed best in datasets P and X. Following
this analysis, we examine the results on dataset H for both U-Net++ and MSA-UNet to
determine if there is a significant improvement.

U-Net++

A confusion matrix allows us to statistically evaluate the network model from a medi-
cal point of view. Next, we show the results of the U-Net++ while also using Algorithm 2
in Figure 9b. To compare with the results of the article [27], we display their results in
Figure 9a.

Truth
Pred

Healthy LVNC Total

Healthy 122 34 156
LVNC 13 210 223
Total 135 244 379

(a) Results U-net.

Truth
Pred

Healthy LVNC Total

Healthy 135 21 156
LVNC 19 204 223
Total 154 225 379

(b) Results U-Net++.

Figure 9. (a) Confusion matrix for LVNC detection from the article [27]. (b) Mean of the confusion
matrices obtained from 5 to fold cross-validation using U-Net++ on the entire dataset (P + X + H)
with a threshold of 27.4%. The standard deviation across all values is approximately 3 or 4 patients,
omitted for simplicity in comparison

We can observe that the new model detects fewer patients with LVNC, the positive
predictive value decreases slightly from 0.94(210/223) to 0.91(204/223), than the traditional
U-Net, but the negative predictive value has a substantial increase from 0.78(122/156) to
0.87(135/156), enlarging by 13 the detection of healthy people. However, it achieves higher
accuracy, precision, and F1-score (Table 8), resulting in a much better-prepared model
for several types of cardiomyopathies. Therefore, a cardiologist can receive an automatic
diagnosis almost instantly and with excellent reliability. Nonetheless, it has a slightly lower
recall, which is an essential measure in our case, as it indicates the cases with LVNC that
are not detected.
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Table 8. Comparison of metrics with [27] for our new U-Net.

U-Net [27] U-Net++

Accuracy 0.876 0.896

Recall 0.942 0.917

Precision 0.861 0.907

F1-score 0.899 0.912

3.5. Areas of Improvement

To identify future research options for improving LVNC detection models, we should
determine where our model is failing.

3.5.1. Dice-Area Relationship

We analyzed images with low Dice coefficients and discovered they are often found at
the extremities of a patient’s magnetic resonance slices. We used normalized slice numbers
for this analysis:

Normalized Slice =
Slice−min(Slicespatient)

max(Slicespatient)−min(Slicespatient)

Thus, a slice is at an end of its value is 0 or 1.

We observed that slices with low Dice coefficients (<0.5) commonly occur at the ends
and usually display limited trabeculation (Figure 10). Three main factors could contribute
to this:

• Due to few trabeculae, small errors drastically decrease the Dice coefficient.
• Edge effects have a much greater significance; the neural network often creates a

mini-layer of trabeculae between the inner and outer layers that humans probably
would not mark.

• The database primarily contains images of hearts with hypertrophic cardiomyopathy
(set P), which are enlarged. Due to the lack of available small heart images, accurate
segmentation is difficult.

Interestingly, the Dice coefficient’s variance is not as pronounced for the outer layer
and inner cavity. This may be due to the trabecular zone’s circular crown shape, making
it sensitive to minor changes, whereas Figure 11 shows a correlation between low Dice
coefficients and low areas, particularly for the trabecular zone, the generally smaller areas
in this zone prevent definitive conclusions about the impact of circular crown effects.

3.5.2. Differences between Hospitals

Before starting this work, one of our expectations was to find a neural network that
would generalize better to other sets (improve in X and H) or that by using Transfer Learn-
ing from the already trained networks, we would achieve similar results in all hospitals.
However, although the methods used have improved results in all sets, even bringing set X
to levels higher than the initial ones in P, there is still a noticeable difference in the results
from different hospitals. This means that by increasing the number of images from X and
H, we should be able to improve results in those sets, reaching P levels.
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Figure 10. Determine the Dice coefficient between the area of a given section (measured in pixels)
and its corresponding image number.

Figure 11. Dice coefficient against the area of that section (measured in number of pixels).

4. Conclusions

This paper improves a deep learning approach to left ventricular trabecular quantifi-
cation based on a U-Net architecture [27] by leveraging the original 800 × 800 images and
a clustering algorithm. This modification leads to an improvement of around 0.02 average
trabecular zone Dice coefficient. Furthermore, we also analyze the behavior of more
advanced neural net architectures such as AttU-Net, MAS-UNet, and U-Net++. These
neural net architectures contribute a cumulative 0.04 boost in the average trabecular zone
Dice coefficient.
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Even though deep learning approaches to automatically diagnose LNVC cardiomy-
opathy are complex, we consider our results promising. Indeed, our proposal allows
cardiologists to infer patients without significant effort and personal subjectivity. Although
there is still room for improvement, an automated, fast, and robust system for determining
LVNC will provide cardiologists with a diagnosis without spending considerable time,
eliminating human error and subjectivity. Proposals like ours favor the evolution of LVNC
and other heart diseases. However, it is interesting to note that among all parties, this
approach will primarily benefit the patient.

The dataset is imbalanced, favoring images of left ventricles with extensive trabeculae.
This imbalance likely contributes to the model’s poorer performance on images featuring
low trabeculae. In future studies, we plan to expand our dataset, obtaining new images to
solve this imbalance.
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