Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.1007/s00500-020-05106-0

Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorLancinskas, Algirdas-
dc.contributor.authorZilinskas, Julius-
dc.contributor.authorFernández Hernández, Pascual-
dc.contributor.authorPelegrín Pelegrín, Blas-
dc.date.accessioned2024-01-28T07:53:07Z-
dc.date.available2024-01-28T07:53:07Z-
dc.date.issued2020-
dc.identifier.citationSoft Computing 24 (2020) 17705–17713es
dc.identifier.issn1432-7642-
dc.identifier.issn1433-7479-
dc.identifier.urihttp://hdl.handle.net/10201/137839-
dc.description©2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ This document is the Accepted, version of a Published Work that appeared in final form in Soft Computing. To access the final edited and published work see https://doi.org/10.1007/s00500-020-05106-0es
dc.description.abstractWe address a discrete competitive facility location problem with an asymmetric objective function and a binary customer choice rule. Both an integer linear programming formulation and a heuristic optimization algorithm based on ranking of candidate locations are designed to solve the problem. The proposed population-based heuristic algorithm is specially adapted for the discrete facility location problems by using their features such as geographical distances and the maximal possible utility of candidate locations, which can be evaluated in advance. The performance of the proposed algorithm was experimentally investigated by solving different instances of the model with real data of municipalities in Spain.es
dc.formatapplication/pdfes
dc.format.extent10es
dc.languageenges
dc.publisherSPRINGERes
dc.relationThis research is funded by the European Social Fund under the No. 09.3.3-LMT-K-712 “Development of Competences of Scientists, other Researchers and Students through Practical Research Activities” measure. This research is funded by the Ministry of Economy and Competitiveness of Spain under the research Project MTM2015-70260-P, and by the Fundación Séneca (The Agency of Science and Technology of the Region of Murcia) under the research Project 19241/PI/14.es
dc.rightsinfo:eu-repo/semantics/openAccesses
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectAsymmetric facility locationes
dc.subjectBinary choice rulees
dc.subjectCombinatorial optimizationes
dc.subjectRandom searches
dc.subjectPopulation-based heuristic algorithmses
dc.subject.otherCDU::5 - Ciencias puras y naturales::51 - Matemáticases
dc.titleSolution of asymmetric discrete competitive facility location problems using ranking of candidate locationses
dc.typeinfo:eu-repo/semantics/articlees
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s00500-020-05106-0es
dc.identifier.doihttps://doi.org/10.1007/s00500-020-05106-0-
dc.contributor.departmentDepartamento de Estadística e Investigación Operativa-
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
paper_SoftComp.pdf278,1 kBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons