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Abstract We address a discrete competitive facility

location problem with an asymmetric objective func-

tion and a binary customer choice rule. Both an in-

teger linear programming formulation and a heuris-

tic optimization algorithm based on ranking of candi-

date locations are designed to solve the problem. The

proposed population-based heuristic algorithm is spe-

cially adapted for the discrete facility location problems

by using their features such as geographical distances

and the maximal possible utility of candidate locations,

which can be evaluated in advance. Performance of the

proposed algorithm was experimentally investigated by

solving different instances of the model with real data

of municipalities in Spain.

Keywords Asymmetric Facility Location · Binary

Choice Rule · Combinatorial Optimization · Random
Search · Population-based Heuristic Algorithms

1 Introduction

Facility location deals with finding in some sense the

best locations for facilities providing goods or services

in a geographical area. The right location for a facil-

ity depends on different factors such us type of service

or product that the firm provides, supply chain char-

acteristics, market environment, etc. A facility location
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problem usually is formulated as a mathematical opti-

mization problems with an objective function which is

subject to minimize or maximize; e.g. utility of the new

facilities which is subject to maximize or any unwanted

effect caused by locating the new facilities which is sub-

ject to minimize, etc.

Competitive facility location problems arise when

firms provide goods or services to customers in a certain

geographical area and compete for the market share

with other firms. The location of their facilities is a

key point to determine market share. There are vari-

ous facility location models and strategies to solve such

problems (see for instance [5,10,19,21]), which differ by

their ingredients such as a facility attraction function,

customers behavior rules, decision variables, a search

space, objective function(s), etc.

Many models in the literature deal with facility lo-

cation for one firm, which enters the market by locating

some new facilities that will compete with other firms

already established in the market. The entering firm

faces a mathematical optimization problem aimed at

finding the optimal locations for the new facilities sub-

ject to maximization of their market share. Depending

on whether the new facilities can be located anywhere in

a given region or their locations must be selected from

a finite set of candidate locations the firm deals with

the continuous or discrete competitive facility location

problem, respectively.

A customer behavior is defined by the rule that cus-

tomers follow when they are choosing the facility to buy

a service. In the literature, it is usual to consider the

distance to the facility as the first criterion used by the

customer, so that the demand is served by the closest

facility [3,23]. Some variants to model attractiveness of

a facility are proposed by Huff [14], where attractiveness

depends on the distance to the facility and its quality,
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which can be estimated by the size of the facility, the

number of parking spaces, leisure and/or entertainment

areas, etc.

The most common customers behavior rules are

called proportional and binary. If the behavior is based

on the proportional rule, then the buying power of a

customer is split among all facilities in proportion to

their attraction [4,17,22]. In the case of the binary rule,

the customer patronizes a single facility – the most at-

tractive one [11,24,25].

A lot of facility location problems use a symmetric

objective function – the value of which is equal for any

permutation of values of variables. However, real-world

applications usually correspond to asymmetric facility

location problems, where the position of a facility in

the solution is crucial; e.g. facility location problems,

where the new facilities are associated with some dif-

ferent properties, such as their quality. Consider a firm

(supermarkets, shopping centers, petrol stations, etc.)

which can open three different types of facilities de-

pending on their characteristics (size, parking, services,

etc.), i.e., facilities with three possible quialities. If the

firm decides to locate one facility of each type, since the

attraction between customers and facilities directly de-

pending on facility quality, the captured market share

by the firm locating facilities of qualities q1, q2, and q3
at points 1, 2, and 3, respectively, will be different of

the captured market share if facilities of qualities q1, q2,

and q3 are located at points 2, 3, and 1, respectively.

So, in this way, we consider that the objective function

is an asymmetric function.

Solving a real-world CFLP is usually complex and

computationally expensive due to reasons such as com-
plex objective function(s) or need of complex analysis of

a large amount of data, e.g. population of prospective

customers, their current and expected behavior when

choosing the facility for a service, etc. Due to these and

similar reasons it can be impossible to find the optimal

solution(s) within a reasonable time. Therefore, heuris-

tic methods, which can be applied to approximate the

optimal solution(s) of a specific optimization problem,

are often used to tackle a real-world CFLP. See [1,2,18]

for examples of application of heuristic algorithms for

single and multi-objective facility location problems.

In this paper we will focus on the discrete facility

location problem that uses the binary rule for the cus-

tomer behavior. The goal is to choose the optimal loca-

tions for a set of new facilities from a finite set of can-

didate locations taking into account that the new facil-

ities have different qualities which are fixed and known,

what makes the problem to be asymmetric.

This work is continuation of our previous work fo-

cused on solution of symmetric facility location prob-

lems using a heuristic algorithm based on ranking of

candidate locations. The algorithm is described in [7],

where the idea of candidate location ranking was pro-

posed. The ranking strategy was especially adopted

to the discrete facility location problems by including

some features of the problem such us geographical dis-

tances, what enables a kind of local search. Although

the algorithm demonstrates good performance when

solving various instances of facility location problems,

the ranking strategy makes the algorithm limited to the

symmetric facility location problems.

This paper is focused on extension of the strategy

for ranking of the candidate locations which makes it

suitable to deal with asymmetric facility location prob-

lems. The proposed strategy is used to design a new

heuristic algorithm which, in contrast with the one

proposed in [7], is population-based and uses a new

strategy to reject without evaluation obviously non-

acceptable candidate solutions.

The reminder of the paper is organized as follows.

In Sect. 2, the notation and formulation of the discrete

facility location problem is presented. The proposed al-

gorithm to solve the problem is described in Sect. 3

and the results of experimental investigation of the al-

gorithm are presented in Sect. 4. Finally, some conclu-

sions are formulated in Sect. 5.

2 Facility Location Problem

An entering firm wants to locate some new facilities

with pre-fixed qualities in a geographical region where

similar facilities of other competing firms are already

present, but for simplicity, we consider all competing

firms as only one, the competitor. The entering firm

wants to locate s new facilities with given qualities

q1, q2, . . . , qs. A solution to the problem will consist on a

s-vector where its i-th component indicates where to lo-

cate a new facility with quality qk, k = 1, . . . , s. In tradi-

tional competitive location models, when new facilities

are to be opened and the quality is not considered as

a variable, or quality is supposed to be associated with

location points, an exchange in the components of the

solution vector leads to the same solution of the model.

However, in this new model, where each position in the

solution vector is associated with the facility quality, an

exchange among the facility locations leads to a differ-

ent solution. When this occurs, we are considering an

asymmetric competitive facility location problem.

Customers are considered to be aggregated to geo-

graphic demand points which are spatially separated in

order to make the problem computationally tractable

(see [9]). It is assumed that customers’ demand, qual-
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ities of the competitors’ facilities and qualities of the

new facilities are fixed and known.

To propose a formulation for this model, the

following general notation is used:

Indices:

i, I Index and set of demand points

(customers)

j, L Index and set of candidate locations

(discrete set)

k,K Index and set of indices of qualities

Data:

wi Demand at demand point i.

dij Distance between demand point i and

facility j.

aijk Attraction that demand point i feels for a

facility located at j with quality qk.

Let be aijk = qk
1+dij

.

ai(F ) Maximum attraction that i feels for

facilities in F , where each facility in F is

noted by its location point and quality.

s Number of new facilities to be located.

Q(r) Set of r quality values,

Q(r) = {q1, q2, . . . , qr}.
C Set of existing facilities of competing

firms.

Variables:

X Set of locations for the new facilities and

its qualities, X = {xjk : j ∈ L, k ∈ K}.

We consider that customers follow a binary be-

haviour to choose the facility which serves its demand.

So, the full demand of each customer will be satisfied

by the facility with maximum attraction. It may occur

that there is more than one facility with maximum at-

traction owned by the entering firm or the competitors.

If all tied facilities are owned by the entering firm, the

firm captures the full demand of the customer, while if

none facility with maximum attraction owns to the en-

tering firm, no demand is captured from the customer.

Otherwise, the entering firm captures a fixed proportion

of customer’s demand.

This problem can be formulated as an ILP problem

considering the following sets:

L>
i = {(j, k) ∈ L×K : aijk > ai(C)},∀i ∈ I (1)

L=
i = {(j, k) ∈ L×K : aij = ai(C)},∀i ∈ I (2)

I∗ = {i ∈ I : L>
i ∪ L=

i 6= ∅},∀i ∈ I (3)

Since the entering firm only will capture demand of

a customer i if its attraction for the new facilities is at

least equal to the attraction for competitor’s facilities,

the set I∗ includes the customers which demand can

be total or partially captured by the entering firm. To

introduce a formulation of the model as a binary pro-

gramming problem, the following variable sets are also

considered:

xjk =


1, if a new facility is located at j

with quality qk;

0, otherwise, where(j, k) ∈ L×K

yi =


1, if customer i is fully captured

by the entering firm;

0, otherwise, where i ∈ I∗

zi =


1, if customer i is partially captured

by the entering firm

0, otherwise, where i ∈ I∗

Then, the asymmetric competitive location problem

can be formulated as:

(P )



max
∑
i∈I∗

wiyi +
∑
i∈I∗

θiwizi

s.t. yi + zi ≤ 1, i ∈ I∗ (4)

yi ≤
∑

(j,k)∈L>
i

xjk,∀i ∈ I∗ (5)

zi ≤
∑

(j,k)∈L=
i

xjk,∀i ∈ I∗ (6)

∑
(j,k)∈L×K

xjk = s (7)

∑
k∈K

xjk ≤ 1,∀j ∈ L (8)∑
j∈L

xjk = 1,∀k ∈ K (9)

xjk ∈ {0, 1},∀(j, k) ∈ L×K,
yi, zi ∈ {0, 1},∀i ∈ I∗

where θi is the proportion of demand captured by the

entering firm from customer i in case of ties on max-

imum attraction between the competitor and the new

facilities; θi ∈ [0, 1], being θi = 0 if customers in i are

conservative, and θi = 1 if are novelty oriented. The

usual value is θi = 0.5∀i, which means that the entering

firm captures a half of customer demand in case of tie.

The objective function gives the total demand captured

by the entering firm, which first term is the demand due

to fully captured customers and the second one is due
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to partially captured customers. Constraints set (4) en-

sures that each customer can only be totally or partially

captured. Constraints set (5) imposes that a customer

is fully captured only if there exists some new facility

located at j with quality qk so that (j, k) ∈ L>
i (anal-

ogously for constraints set (6) with partially captured

and (j, k) ∈ L=
i ). Constraint (7) limits the number of

new facilities to s. Constraints set (8) stays that only a

new facility can be located at each candidate location j,

and constraints set (9) ensures that a new facility will

be located for each given quality. The previous formu-

lation extends the classical formulation with one index

variables of the symmetric competitive location model

with binary customer choice rule. In the new model not

only the locations for the new facilities must be decided,

but also the quality of the facility at each location. The

previous formulation can be simplified as follows.

Note that if two or more new facilities were located

at the same location candidate point, as customers fol-

low a binary choice rule, only the facility with the

biggest quality would be chosen to serve its demand,

and if all these facilities had the same quality, the enter-

ing firm would capture the same demand locating only

one of them. As the objective is to maximize the total

captured demand, an optimal solution would never con-

tain more than one new facility at the same point. This

means that constraints set (8) is unnecessary and can

be removed. On the other hand, constraints set (9) can

be rewritten in a less restrictive way as a less or equal

inequality, because at any optimal solution of the prob-

lem, this constraint will be verified in equality for each

one of the prefixed qualities, otherwise this would mean

that any of the new facilities is not located any more,

which would imply that constraint (7) does not hold.

Furthermore, each constraint yi, zi ∈ {0, 1}, ∀i ∈ I∗,

can be replaced by yi, zi ≥ 0, ∀i ∈ I∗. If so, in the opti-

mal solution yi, zi, ∀i ∈ I∗, will take the value 0, or the

maximum possible value which is 1 due to constraints

set (4). Then, the formulation of (P ) is equivalent to:



max
∑
i∈I∗

wiyi +
∑
i∈I∗

θiwizi

s.t. yi + zi ≤ 1, i ∈ I∗

yi ≤
∑

(j,k)∈L>
i

xjk,∀i ∈ I∗

zi ≤
∑

(j,k)∈L=
i

xjk,∀i ∈ I∗∑
(j,k)∈L×K

xjk = s∑
j∈L

xjk ≤ 1,∀k ∈ K

xjk ∈ {0, 1},∀(j, k) ∈ L×K, yi, zi ≥ 0,∀i ∈ I∗

3 Ranking-based Discrete Optimization

Algorithm

The concept of Ranking Based Discrete Optimization

Algorithm (RDOA) has been proposed in [7]. The ini-

tial version of the algorithm was based on a single-agent

random search strategy, where new solutions were al-

ways generated by modifying the best known solution.

The new version of RDOA, being presented in this sec-

tion, is population-based where new solutions are gen-

erated by modifying a solution

X = {x1, x2, . . . , xs} (7)

sampled from a set P of the best solutions found so far.

At the beginning of the algorithm the set P contains

a single randomly generated solution, but is subject to

be supplemented up to nP elements.

When P contains more than one item, then X is

sampled considering sampling probability proportional

to its objective function value; the better solution – the

larger probability to be sampled.

A new candidate solution

X(n) = {x(n)1 , x
(n)
2 , . . . , x(n)s } (8)

is generated by in turn taking candidate locations from

the best known solution X and changing them to an-

other ones randomly selected from the set of all possi-

ble candidate locations excluding those which already

formsX orX(n). Each location xi is changed with prob-

ability 1/s, and is copied without changing with prob-

ability 1− 1/s:

x
(n)
i =

{
l ∈ L \ (X ∪X(n)), if ξi < 1/s,

xi, otherwise,
(9)

where ξi is a random number uniformly generated over

the interval [0, 1], and i = 1, 2, . . . , s.

A candidate location lj ∈ L can be selected to rep-

resent i-th location in X(n) with probability

π
(r)
ij =

rij∑|L|
k=1 rik

, (10)

where rij is a rank of candidate location lj being as a

place for i-th new facility. Analogously, sampling prob-

ability of lj as a place for i-th new facility can be evalu-

ated by including geographical distance between candi-

date location lj and current location of i-th new facility:

π
(rd)
ij =

rij

d(lj , xi)
∑|L|

k=1
rik

d(lk,xi)

, (11)

where d(lj , xi) is a geographical distance between can-

didate location lj ∈ L and candidate location xi ∈ X
which is being changed (i = 1, 2, . . . , s).
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Lets denote by

Ri = (ri1, ri2, . . . , rij , . . .) (12)

the ranks of all candidate locations from L being as a

place for i-th new facility. Then all ranks can be de-

scribed by matrix R of s rows and |L| columns:

R =


R1

R2

...

Rs

 =


r11 r12 . . . r1|L|
r21 r22 . . . r2|L|
...

...
. . .

...

rs1 rs2 . . . rs|L|

 . (13)

Initial values of R are equal to 1 and is dynami-

cally adjusted with respect to success and failures when

generating a new candidate solution. If the newly gen-

erated solution X(n) is better than the worst solution

X(w) ∈ P , then

(1) P is updated by including X(n):

P ← P ∪ {X(n)}. (14)

If size of P exceeds its size limit nP , then the worst

candidate solution X(w) is removed from P .

(2) ranks of all candidate locations are increased by one:

rij =

{
rij + 1, if lj = X

(n)
i ,

rij , otherwise,
(15)

(3) corresponding ranks of all candidate locations which

form a candidate solution in P which is improved by

X(n), but do not form it are reduced:

rij = rij − k, (16)

where

k = |{X ⊂ P : xi = lj ∧M(X) < M(X(n))}|. (17)

If X(n) do not improve the worst solution X(w) ∈ P ,

then the ranks of all candidate locations forming un-

successfully generated solution X(n), but do not form

the worst candidate solution P , are reduced by one:

rij =

{
rij − 1, if lj = xi ∧ lj 6= x

(w)
i

rij , otherwise.
(18)

Reducing rank values can make a rank equal to zero

or negative value, e.g. rij = −k, where k ≥ 0. Then all

ranks in Ri are increased by k + 1.

After processing the newly generated solution algo-

rithm continues to the next iteration, where another so-

lution X is sampled from P to generate a new solution

X(n). The procedure continues till stopping criterion

is satisfied, which is based on the number of function

evaluation.

The initial pool size nP is given as an algorithm pa-

rameter and is further reduced thus letting to perform a

wider exploration of the search space in the early stage

of the algorithm and focus on local search in the final

stage of the algorithm. The reduction is performed after

every 20% of function evaluations by removing a half

worst solutions.

The algorithm which uses the ranks only to evalu-

ate sampling probability for candidate locations is de-

noted by RDOA and the algorithm, which additionally

includes geographical distance is denoted by RDOA-D.

3.1 Pre-calculated Market Share

Let’s denote by m
(1)
ij the market share of i-th new fa-

cility located in candidate location lj when locating a

single facility, and by m
(s)
ij – the market share of i-th

new facility located in lj when locating s > 1 new fa-

cilities.

Evaluation of m
(1)
ij requires approximately s times

less computational effort than evaluation of m
(s)
ij . Al-

though computation of m
(1)
ij , when i = 1, 2, . . . s and

j = 1, 2, . . . |L|, requires to devote a significant num-

ber of function evaluations, but the obtained informa-

tion can be useful to save computational effort in later

stages of the algorithm.

The first feature derived from m
(1)
ij is market share

obtained by a single facility located at j-th candidate lo-

cation. Naturally, facilities that separately attract more

customers should form better solution when locating

s > 1 new facilities. Therefore m
(1)
ij can be included

when calculating sampling probability for candidate lo-

cation lj in (9). Then sampling probability, expressed

by (11) can be evaluated by

π
(rdp)
ij =

rijm
(1)
ij

d(lj , xi)
∑|L|

k=1
rikm

(1)
ik

d(lk,xi)

. (19)

The market share m
(1)
ij is evaluated taking into ac-

count the competition with preexisting facilities belong-

ing to the competitors, but do not include competition

between new facilities being located at the same time.

Therefore,

m
(1)
ij ≥ m

(s)
ij , (20)

and∑
lj∈X

m
(1)
ij ≥M(X). (21)

This information is useful when deciding whether a

newly generated solution X(n) could improve the worst
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solution in the pool P or not. If∑
lj∈X(n)

m
(1)
ij ≤M(X(w)), (22)

then, due to (21), it is not possible that X(n) is at-

tracts more customers than X(w) and there is no need

to perform complete evaluation of the solution, which

requires incomparably more computational effort than

calculating sum of several numbers. This lets us save

function evaluations for the donation of insignificant

computational effort.

The algorithm, which, in addition to features of

RDOA-D, includes pre-calculated market share in sam-

pling probability evaluation and reject obviously unac-

ceptable solutions, is denoted by RDOA-D-PreMS.

4 Experimental Investigation

The proposed algorithms have been experimentally in-

vestigated by solving asymmetric DCFLP aimed at lo-

cation of new facilities of different qualities.

The database of 1000 municipalities in Spain were

used as demand points. Ten preexisting facilities were

located in 10 largest demand points with randomly gen-

erated qualities: the lowest quality – 45, the largest –

68, and the average – 56.

Instances of DCFLP vary on the number of candi-

date locations |L| ∈ {500, 1000}, and the number of

new facilities s ∈ {3, 5}.
Different quality values for the new facilities were

used. At the beginning it was expected to locate low

quality facilities, with the corresponding quality values

Q
(3)
L = (10, 20, 30), (23)

when s = 3 and

Q
(5)
L = (10, 20, 30, 40, 50), (24)

when s = 5. Later the qualities were increased and

Q
(3)
H = (50, 60, 70) (25)

were used to investigate the impact of the quality val-

ues.

Optimal solutions for different problem instances

were found using deterministic optimization algorithm

Xpress [8]. See Table 1, which will be used to check if

an algorithm is able to find them or not, and if so, how

many function evaluations are needed.

Table 1 Optimal solutions found by deterministic algorithm
Xpress.

|L| s Q X M(X)

500 3 Q
(3)
L (460, 41, 500) 13.05

1000 3 Q
(3)
L (622, 41, 500) 13.05

500 3 Q
(3)
H (4, 1, 2) 51.45

1000 3 Q
(3)
H (4, 1, 2) 51.45

500 5 Q
(5)
L (460, 81, 29, 331, 4) 24.20

4.1 Average Market Share Obtained by Heuristic

Algorithms

Independent on the heuristic algorithm, 5000 function

evaluation was devoted for a single run. Due to stochas-

tic nature of algorithms under investigation, 100 runs

were performed for each experiment and average re-

sults were recorded. The maximal pool size was set to

nP = 64 and was reduced by a half after every 1000

function evaluations, thus using pool of 8 best candi-

date solutions for the last thousand of function evalua-

tions.

The performance of the proposed algorithms were

compared with the performance of Genetic Algorithm

(GA), which was proposed by Holland in 1975 [13] and

was successfully applied to combinatorial optimization

problems (see [16,26]), including facility location prob-

lems (see [6,15]). GA is population-based algorithm,

which simulates genetic such as crossover of individ-

uals and mutation of derived individuals (see [20] for

details).

The population size was set to 64 individuals – the

same as initial pool size in the proposed algorithms.

The uniform crossover with the rate equal to 0.8 and

mutation rate equal to 1/s were used to generate new

individuals.

The first experiment was focused on selecting opti-

mal locations for 3 new facilities from a set of 500 and

1000 candidate locations considering low qualities Q
(3)
L

for the new facilities. All three versions of RDOA were

used to approximate the optimal solution within 5000

function evaluations recording average market share of

the best solution found after every 1000 function eval-

uations.

The results are presented in Figs. 1 and 2, where the

the first figure presents results of the instance with 500

candidate locations and the second one – with 1000 can-

didate locations. The horizontal axis of a graph stands

for the number of function evaluations and the vertical

one – for the percent of market share captured by the

new facilities.

One can see from the figures, RDOA without geo-

graphical distance and pre-calculated market share out-

performs GA in both cases. Significant difference ap-
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Fig. 1 Results obtained when choosing locations for 3 new
facilities from 500 candidate locations considering low quali-

ties Q
(3)
L for the new facilities.

pears in early stage of the algorithm, what means that

RDOA is able to find much more better solution in

the beginning of the procedure, e.g. after 1000 function

evaluations.

The advantage of inclusion of geographical distance

in calculation of sampling probabilities for candidate

locations (RDOA-D) is notable in later stage of the

algorithm – it is specially notable in the instance with

500 candidate locations, where the best performance is

achieved after 3000 function evaluations. Inclusion of

the geographical distance is a kind of a local search

and is more useful when updating a good candidate

solution. This could be a reason for lower performance

at the beginning of the algorithm.

The best performance was demonstrated by RDOA-

D-PreMS, where both geographical distance and infor-

mation obtained from pre-calculated market share were

included. The average solution obtained by RDOA-D-

PreMS after 1000 function evaluations is more less the

same as average solution obtained by RDOA after 5000

function evaluations and notably better than average

solution obtained by GA after 5000 function evalua-

tions.

Duration of each experiment with RDOA-D-PreMS

lasts from 5 to 8 seconds depending on a problem in-

stance. The algorithm has additional computational

work to calculate initial market-share of candidate loca-

tions, but the budget of function evaluations for further

computations is reduced accordingly to keep the same

total complexity of the algorithm. Some of solutions

generated by RDOA-D-PreMS were rejected without

function evaluation, therefore more solutions have to

be generated in this algorithm. On the other hand, the

main computational effort is devoted for function eval-

uation and generation of these unacceptable solutions
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Fig. 2 Results obtained when choosing locations for 3 new
facilities from 1000 candidate locations considering low qual-

ities Q
(3)
L for the new facilities.

takes insignificant amount of computational resources,

which increases the duration of the algorithm by less

than 3% of the total computational time.

4.2 Impact of the Problem Instance

Next experiment was aimed at investigation of impact

of quality values for the new facilities to the perfor-

mance of the optimization procedure. The qualitiesQ
(3)
H

were used as quality values for the new facility thus

making average quality of a new facilities larger than

average quality value of a preexisting facility.

The experiment was performed under the same con-

ditions as the first one, but performance of the best ver-

sion of the proposed algorithms – the RDOA-D-PreMS

– was compared with GA in this experiment.

One can see from the results, presented in Figs. 3

and 4, the RDOA-D-PreMS significantly outperforms

GA independent on function evaluations performed and

instance of DCFLP. In both cases RDO-D-PreMS pro-

duces the best result after 2000 function evaluations,

whereas the instance with 1000 candidate locations ap-

peared to be more complicated for GA.

The third experiment was aimed at investigation of

impact of the number of the new facilities to the per-

formance of the algorithms. It was expected to choose

locations for 5 new facilities from the set of 500 can-

didate locations considering low qualities Q
(5)
L for the

new facilities.

The results, presented in Fig. 5, demonstrate advan-

tages of the proposed RDOA-D-PreMS – the average

market share of the best solution found by RDOA-D-

PreMS after 2000 function evaluations is quite close to

the best market share of the best solution ever found
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Fig. 3 Results obtained when choosing locations for 3 new
facilities from 500 candidate locations considering high qual-

ities Q
(3)
H for the new facilities.

for this problems, and is notably better than the aver-

age market share produced by GA after 5000 function

evaluations.

4.3 Probability to Find Optimal Solution

The experimental investigation showed, that all four

heuristic algorithms investigated in this paper are able

to find the optimal solution, its determination is not

guaranteed. Therefore it is important to investigate the

probability to achieve the optimal solution or its ap-

proximation with known discrepancy. It was evaluated

by cumulative distribution function (CDF), considering

the error of approximation of the optimal solution as a

real-valued random variable (see [12] for details).

The obtained CDF curves are presented in Figs. 6

and 7, where the horizontal axis stands for the error of

the approximation of the optimal solution (in percents

of the objective function value), and the vertical axis –

for the probability to get the approximation with the

corresponding accuracy.

Figure 6 illustrates that RDOA-D-PreMS almost al-

ways determines the optimal solution meanwhile GA

demonstrate good rate of finding approximation of the

optimal solution with 3–4 percents discrepancy after

5000 function evaluations. Figure 7 illustrates lower

probability to find the optimal solution when qualities

of the new facilities are high: the probability to find the

optimal solution using RDOA-D-PreMS is around 0.4,

meanwhile GA finds the optimal solution with proba-

bility around 0.2 and around 0.1 for the instances with

500 and 1000 candidate locations, respectively.

The RDOA-D-PreMS always finds an approxima-

tion of the optimal solution with 3% discrepancy for the
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Fig. 4 Results obtained when choosing locations for 3 new
facilities from 1000 candidate locations considering high qual-

ities Q
(3)
H for the new facilities.

 20

 21

 22

 23

 24

1000 2000 3000 4000 5000

M
a
rk

e
t 

sh
a
re

 (
%

)

Function evaluations

GA RDOA-D-PreMS

Fig. 5 Results obtained when choosing locations for 5 new
facilities from 500 candidate locations considering low quali-

ties Q
(5)
L for the new facilities.

instance with 500 candidate locations, meanwhile the

probability to find an approximation with lower than

5% discrepancy for the instance with 1000 candidate

locations is 0.92.

5 Conclusions

The competitive facility location problem with binary

customer choice rule and asymmetric objective func-

tion was formulated as a mixed integer linear program-

ming problem and heuristic strategies to deal with large

sets of data were designed. The proposed algorithms

use a strategy for ranking of the candidate locations,

which was applied for symmetric problems in our pre-

vious work, and redesigned to make it suitable for asym-

metric problems. Additionally, new algorithms include

storing of a set of the best solutions found so far, which
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Fig. 6 Probability to obtain the optimal solution with known
discrepancy when choosing locations for 3 new facilities from

500 candidate locations considering low qualities Q
(3)
L for the

new facilities.

size is reduced automatically, and the evaluation of up-

per bounds for the market share of the new facilities,

which was used to reject obviously unacceptable solu-

tions without evaluation of the objective function.

The results of the experimental investigation

demonstrate that the proposed heuristic RDOA-D-

PreMS is able to determine the optimal solution of dif-

ferent instances of facility location problems, and no-

tably outperforms Genetic Algorithm, which is consid-

ered as a good strategy for such a kind of problems.
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Location: A Survey of Applications and Methods, pp.
367–386. Springer (1995)
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