Por favor, use este identificador para citar o enlazar este ítem:
10.1109/TII.2022.3171321
Twittear
Título: | A supervised ML Biometric Continuous Authentication System for Industry 4.0 |
Fecha de publicación: | 29-abr-2022 |
Editorial: | IEEE |
Cita bibliográfica: | IEEE Transactions on Industrial Informatics |
Materias relacionadas: | CDU::6 - Ciencias aplicadas |
Palabras clave: | Continuous Authentication Sensors Applications usage Speaker recognition ML/DL Industry 4.0 |
Resumen: | Continuous authentication (CA) is a promis- ing approach to authenticate workers and avoid security breaches in the industry, especially in Industry 4.0, where most interaction between workers and devices takes place. However, introducing CA in industries raises unsolved questions regarding machine learning (ML) models: i) its precision and performance, ii) its robustness and iii) the issue about if or when to retrain the models. To answer these questions, this work explores these issues with a proposed supervised vs non-supervised ML-based CA sys- tem that uses sensors, applications statistics, or speaker data collected by the operator’s devices. Experiments show supervised models with Equal Error Rates of 7.28% using sensors data, 9.29% with statistics, and 0.31% with voice, a significant improvement of 71.97%, 62.14%, and 97.08%, respectively, over unsupervised models. Voice is the most robust dimension when adding new workers, with less than 2% of false acceptance rate even if workforce size is doubled. |
Autor/es principal/es: | Espín López, Juan Manuel Huertas Celdrán, Alberto Esquembre, Francisco Martínez Pérez, Gregorio Marín-Blázquez, Javier G. |
Facultad/Departamentos/Servicios: | Facultades, Departamentos, Servicios y Escuelas::Departamentos de la UMU::Matemáticas Facultades, Departamentos, Servicios y Escuelas::Departamentos de la UMU::Ingeniería de la Información y las Comunicaciones |
Versión del editor: | https://ieeexplore.ieee.org/document/9765715 |
URI: | http://hdl.handle.net/10201/137591 |
DOI: | 10.1109/TII.2022.3171321 |
Tipo de documento: | info:eu-repo/semantics/article |
Número páginas / Extensión: | 9 |
Derechos: | info:eu-repo/semantics/openAccess Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
Descripción: | © 2022. IEEE. This document is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ This document is the Accepted version of a Published Work that appeared in final form in IEEE Transactions on Industrial Informatics. |
Aparece en las colecciones: | Artículos: Matemáticas |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2022 Transactions Ind Inf.pdf | 1,61 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons