Por favor, use este identificador para citar o enlazar este ítem: 10.1109/TII.2022.3171321

Título: A supervised ML Biometric Continuous Authentication System for Industry 4.0
Fecha de publicación: 29-abr-2022
Editorial: IEEE
Cita bibliográfica: IEEE Transactions on Industrial Informatics
Materias relacionadas: CDU::6 - Ciencias aplicadas
Palabras clave: Continuous Authentication
Sensors
Applications usage
Speaker recognition
ML/DL
Industry 4.0
Resumen: Continuous authentication (CA) is a promis- ing approach to authenticate workers and avoid security breaches in the industry, especially in Industry 4.0, where most interaction between workers and devices takes place. However, introducing CA in industries raises unsolved questions regarding machine learning (ML) models: i) its precision and performance, ii) its robustness and iii) the issue about if or when to retrain the models. To answer these questions, this work explores these issues with a proposed supervised vs non-supervised ML-based CA sys- tem that uses sensors, applications statistics, or speaker data collected by the operator’s devices. Experiments show supervised models with Equal Error Rates of 7.28% using sensors data, 9.29% with statistics, and 0.31% with voice, a significant improvement of 71.97%, 62.14%, and 97.08%, respectively, over unsupervised models. Voice is the most robust dimension when adding new workers, with less than 2% of false acceptance rate even if workforce size is doubled.
Autor/es principal/es: Espín López, Juan Manuel
Huertas Celdrán, Alberto
Esquembre, Francisco
Martínez Pérez, Gregorio
Marín-Blázquez, Javier G.
Facultad/Departamentos/Servicios: Facultades, Departamentos, Servicios y Escuelas::Departamentos de la UMU::Matemáticas
Facultades, Departamentos, Servicios y Escuelas::Departamentos de la UMU::Ingeniería de la Información y las Comunicaciones
Versión del editor: https://ieeexplore.ieee.org/document/9765715
URI: http://hdl.handle.net/10201/137591
DOI: 10.1109/TII.2022.3171321
Tipo de documento: info:eu-repo/semantics/article
Número páginas / Extensión: 9
Derechos: info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Descripción: © 2022. IEEE. This document is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ This document is the Accepted version of a Published Work that appeared in final form in IEEE Transactions on Industrial Informatics.
Aparece en las colecciones:Artículos: Matemáticas

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
2022 Transactions Ind Inf.pdf1,61 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons