Por favor, use este identificador para citar o enlazar este ítem: 10.1109/TII.2022.3171321

Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorEspín López, Juan Manuel-
dc.contributor.authorHuertas Celdrán, Alberto-
dc.contributor.authorEsquembre, Francisco-
dc.contributor.authorMartínez Pérez, Gregorio-
dc.contributor.authorMarín-Blázquez, Javier G.-
dc.date.accessioned2024-01-23T11:58:37Z-
dc.date.available2024-01-23T11:58:37Z-
dc.date.issued2022-04-29-
dc.identifier.citationIEEE Transactions on Industrial Informaticses
dc.identifier.urihttp://hdl.handle.net/10201/137591-
dc.description© 2022. IEEE. This document is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ This document is the Accepted version of a Published Work that appeared in final form in IEEE Transactions on Industrial Informatics.es
dc.description.abstractContinuous authentication (CA) is a promis- ing approach to authenticate workers and avoid security breaches in the industry, especially in Industry 4.0, where most interaction between workers and devices takes place. However, introducing CA in industries raises unsolved questions regarding machine learning (ML) models: i) its precision and performance, ii) its robustness and iii) the issue about if or when to retrain the models. To answer these questions, this work explores these issues with a proposed supervised vs non-supervised ML-based CA sys- tem that uses sensors, applications statistics, or speaker data collected by the operator’s devices. Experiments show supervised models with Equal Error Rates of 7.28% using sensors data, 9.29% with statistics, and 0.31% with voice, a significant improvement of 71.97%, 62.14%, and 97.08%, respectively, over unsupervised models. Voice is the most robust dimension when adding new workers, with less than 2% of false acceptance rate even if workforce size is doubled.es
dc.formatapplication/pdfes
dc.format.extent9es
dc.languageenges
dc.publisherIEEEes
dc.relationThis research was partially funded by the Spanish Ministry of Science and Innovation, State Research Agency, FEDERfunds, through projects RTI2018-095855-B-I00, MTM2017-84079-P and PID2019-108377RB- C32, by the Swiss Federal Office for Defense Procurement (armasuisse) with the CyberTracer (CYD-C-2020003) project, and by the University of Zu ̈rich UZH.es
dc.rightsinfo:eu-repo/semantics/openAccesses
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectContinuous Authenticationes
dc.subjectSensorses
dc.subjectApplications usagees
dc.subjectSpeaker recognitiones
dc.subjectML/DLes
dc.subjectIndustry 4.0es
dc.subject.otherCDU::6 - Ciencias aplicadases
dc.titleA supervised ML Biometric Continuous Authentication System for Industry 4.0es
dc.typeinfo:eu-repo/semantics/articlees
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/9765715es
dc.identifier.doi10.1109/TII.2022.3171321-
dc.contributor.departmentDepartamento de Matemáticas-
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
2022 Transactions Ind Inf.pdf1,61 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons