Por favor, use este identificador para citar o enlazar este ítem:
10.1109/TII.2022.3171321


Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Espín López, Juan Manuel | - |
dc.contributor.author | Huertas Celdrán, Alberto | - |
dc.contributor.author | Esquembre, Francisco | - |
dc.contributor.author | Martínez Pérez, Gregorio | - |
dc.contributor.author | Marín-Blázquez, Javier G. | - |
dc.date.accessioned | 2024-01-23T11:58:37Z | - |
dc.date.available | 2024-01-23T11:58:37Z | - |
dc.date.issued | 2022-04-29 | - |
dc.identifier.citation | IEEE Transactions on Industrial Informatics | es |
dc.identifier.uri | http://hdl.handle.net/10201/137591 | - |
dc.description | © 2022. IEEE. This document is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ This document is the Accepted version of a Published Work that appeared in final form in IEEE Transactions on Industrial Informatics. | es |
dc.description.abstract | Continuous authentication (CA) is a promis- ing approach to authenticate workers and avoid security breaches in the industry, especially in Industry 4.0, where most interaction between workers and devices takes place. However, introducing CA in industries raises unsolved questions regarding machine learning (ML) models: i) its precision and performance, ii) its robustness and iii) the issue about if or when to retrain the models. To answer these questions, this work explores these issues with a proposed supervised vs non-supervised ML-based CA sys- tem that uses sensors, applications statistics, or speaker data collected by the operator’s devices. Experiments show supervised models with Equal Error Rates of 7.28% using sensors data, 9.29% with statistics, and 0.31% with voice, a significant improvement of 71.97%, 62.14%, and 97.08%, respectively, over unsupervised models. Voice is the most robust dimension when adding new workers, with less than 2% of false acceptance rate even if workforce size is doubled. | es |
dc.format | application/pdf | es |
dc.format.extent | 9 | es |
dc.language | eng | es |
dc.publisher | IEEE | es |
dc.relation | This research was partially funded by the Spanish Ministry of Science and Innovation, State Research Agency, FEDERfunds, through projects RTI2018-095855-B-I00, MTM2017-84079-P and PID2019-108377RB- C32, by the Swiss Federal Office for Defense Procurement (armasuisse) with the CyberTracer (CYD-C-2020003) project, and by the University of Zu ̈rich UZH. | es |
dc.rights | info:eu-repo/semantics/openAccess | es |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Continuous Authentication | es |
dc.subject | Sensors | es |
dc.subject | Applications usage | es |
dc.subject | Speaker recognition | es |
dc.subject | ML/DL | es |
dc.subject | Industry 4.0 | es |
dc.subject.other | CDU::6 - Ciencias aplicadas | es |
dc.title | A supervised ML Biometric Continuous Authentication System for Industry 4.0 | es |
dc.type | info:eu-repo/semantics/article | es |
dc.relation.publisherversion | https://ieeexplore.ieee.org/document/9765715 | es |
dc.identifier.doi | 10.1109/TII.2022.3171321 | - |
dc.contributor.department | Departamento de Matemáticas | - |
Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2022 Transactions Ind Inf.pdf | 1,61 MB | Adobe PDF | ![]() Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons