Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.1016/j.econmod.2020.02.007

Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorCamacho, Maximo-
dc.contributor.authorRomeu, Andres-
dc.contributor.authorRuiz, Manuel-
dc.date.accessioned2024-01-10T12:48:52Z-
dc.date.available2024-01-10T12:48:52Z-
dc.date.issued2021-01-
dc.identifier.citationEconomic Modelling; Volume 94, January 2021, Pages 649-661es
dc.identifier.issn1873-6122-
dc.identifier.urihttp://hdl.handle.net/10201/137112-
dc.description© 2020 Elsevier B.V.. This document is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ This document is the accepted version of a published work that appeared in final form in Economic Modelling.es
dc.description.abstractIn this study, we use multiple-unit symbolic dynamics and transfer entropy to develop a non-parametric Granger causality test procedure for longitudinal data. Monte Carlo simulations show that our test exhibits the correct size and a high power in situations where linear panel data causality tests fail, such as (1) when the linearity assumption does not hold, (2) when the data generating process is heterogeneous across the cross-section units or presents structural breaks, (3) when there are extreme observations in some of the cross-section units, (4) when the process exhibits causal dependence on the conditional variance, or (5) when the analysis involves qualitative data. We illustrate the usefulness of our proposed procedure by analyzing the dynamic causal relationships between public expenditure and GDP, between firm productivity and firm size in US manufacturing sectors, and among sovereign credit ratings, growth, and interest rates.es
dc.formatapplication/pdfes
dc.format.extent28es
dc.languageenges
dc.relationECO2016-76178-P; ECO2015-65637-P; 19884/GERM/15es
dc.rightsinfo:eu-repo/semantics/openAccesses
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectTransfer entropy testes
dc.subjectLongitudinal dynamic dataes
dc.subjectCausality testes
dc.subject.otherCDU::3 - Ciencias socialeses
dc.titleSymbolic transfer entropy test for causality in longitudinal dataes
dc.typeinfo:eu-repo/semantics/articlees
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0264999319301683es
dc.identifier.doihttps://doi.org/10.1016/j.econmod.2020.02.007-
dc.contributor.departmentDepartamento de Métodos Cuantitativos para la Economía y la Empresa-
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
STE.pdf699,33 kBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons