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Abstract

In this paper, we use multiple-unit symbolic dynamics and the concept of transfer entropy to

develop a non-parametric Granger causality test procedure for longitudinal data. Monte Carlo

simulations show that our test displays the correct size and large power in situations where

linear panel data causality tests fail such as when the linearity assumption breaks down, when

the data generating process is heterogeneous across the cross-section units or presents struc-

tural breaks, when there are extreme observations in some of the cross-section units, when the

process displays causal dependence in the conditional variance and when the analysis involves

qualitative data. We illustrate the usefulness of our proposal with the analysis of the dynamic

causal relationships between public expenditure and GDP, between firm productivity and firm

size in US manufacturing sectors, and among sovereign credit rating, growth and interest rates.
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manuel.ruiz@upct.es

1



Symbolic transfer entropy test for causality in longitudinal data Camacho, Romeu, Ruiz-Maŕın

1 Introduction

Testing whether or not an economic variable x causes another y is a central topic in economics.1

This is particularly important for understanding and interpreting dynamic economic phenomena

such as those relating monetary and fiscal policies with output, energy consumption with growth,

demand or supply shocks with economic fluctuations, oil prices with speculation, or firms’

expenditure in R&D with profits, among many others. Following the lines initiated by Granger

(1969), the causality analysis was originally designated in terms of changes in joint distributions.

However, in practice, economists focus on assessing causality in time series contexts in terms of

incremental predictability through block exogeneity tests. Then, examining causality has been

reduced to determine whether the shocks in the time series xt lead the time series yt and help

to predict it significantly.

Perhaps due to the traditional data scarcity, testing Granger noncausality of xt and yt has

frequently relied on data of cross-sectional units i (individual, firm, or country), which restricts

considerably the analysis. However, thanks to the recent advances in the diffusion of information

technology, most data sets tend to have both cross-sectional and time series features, being the

number of cross sections frequently larger than the time series dimension. Some examples are

the data provided by World Bank Open Data with free and open access to global development

data, the economic time-series based on national accounts collected in the Penn World Table,

or the data on prices, employment, working conditions, and productivity provided by the US

Bureau of Labor Statistics. Thus, performing causality tests on only one cross-sectional unit is

unnecessarily partial or local nowadays.

Several causality tests have been proposed in the context of pooling time series data from

different units. Being easy to implement, the traditional approach follows the lines initiated

by Holtz-Eakin, Newey and Rosen (1988) and assumes homogeneity across cross-section units,

in the sense that either causality occurs everywhere or it occurs nowhere in the panel. To

overcome this unrealistic assumption, Dumitrescu and Hurlin (2012) proposed a causality test

for heterogeneous panel data models whose test statistic is based on averaging the individual

Wald statistics of Granger non causality across the cross-section units. In this context, the test

handles with different lag orders in the autoregressive processes across the cross-section units

and with unbalanced panels.2

Common to all these extensions of Granger causality tests to panel data is that a linear,

basically autoregressive representation of the time series is required. By means of Monte Carlo

simulations, we show that the size and power of these tests are seriously deteriorated when the

linearity assumption breaks down, when the data generating process is heterogeneous across

the cross-section units, when there are structural breaks or extreme observations in some of the

cross-section units, when the causal dependence appears in the conditional variance or when it

1Although this paper focuses on economic applications, there has been recently a growing interest in the use of
Granger causality to identify causal interactions in several other fields such as neuroscience and neuroimaging (Seth,
Barrett, and Barnett, 2015).

2Hurlin and Venet (2001) assume homogeneous autoregressive coefficients but they allow for heterogeneity in the
regression coefficients slopes. Weinhold (1996) and Nair-Reichert and Weinhold (2001) have considered testing for
causality in a panel using random coefficient models.
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involves qualitative data. Unfortunately, these scenarios are the norm rather than the exception

when the number of cross-section units increases in the panel, as it is the case of most of the

data sets provided by institutions such as the World Bank Open Data, the Penn World Table

and the US Bureau of Labor Statistics.

To overcome this drawback, we extend the causality test described in Matilla-Garcia, Ruiz-

Marin and Dore (2014) to a longitudinal data setup by translating the information set of the time

series dynamics into symbols by means of a simple symbolization technique. More concretely,

we study all symbols obtained by categorizing/symbolizing m ≥ 1 consecutive values of the

individual time series (namely m-history), which are considered here as ordinal patterns of the

m numbers in the case of quantitative data, and as different labels in the case of qualitative

data. Under the non-restrictive assumption that the symbolization procedure respects the null

hypothesis of non-causality across the cross-unit sections, one can simply stack the symbols

across the different cross units on the top of one another.

Then, we use the symbolic transfer entropy associated with the pooled set of symbols to

construct a causality test for longitudinal data in which we check whether the stacked symbols

of r -lagged series xt−r reduce the entropy (which is a measure of the degree of disorder) of

the stacked symbols of yt conditional to those of yt−r. In addition, we use the concept of net

transfer entropy to test directional causality, i.e., whether the stacked symbols of past xt cause

those of current yt or the other way around, whether the stacked symbols of past yt cause those

of current xt. Due to the difficult to provide a distribution for the symbolic transfer entropy

and the symbolic net transfer entropy measures, we rely on stationary bootstrap methods to

compute significance of our causality tests statistics.

By construction, the test is non-parametric and relies on mild assumptions. This feature is

reflected in the Monte Carlo analyses provided, suggesting that the test displays correct size

and higher power in those cases where causality tests based in linear panel data specifications

fail. The reason is that our test avoids the need to rely on a linear parametric representation of

the data set which, if the model is misspecified or not consistently estimated, might invalidate

the results of those tests based on linear panel data representations. Notably, our causality test

for longitudinal data performs well even when the data generating process varies significantly

across the cross-sectional units.

In order to illustrate the usefulness of the symbolic transfer entropy test with longitudinal

data in practice and how its results can differ from other approaches, we provide three empir-

ical examples. In the first example, that uses annual data collected by the World Bank Open

Data from 1961 to 2016 for a set of 100 countries, we detect low evidence of causal relation-

ships between the rate of growth of government expenditures and GDP growth. In the second

example, using four-digit data provided by the US Bureau of Labor Statistics Current Employ-

ment Statistics survey of 86 industries from 1988 to 2015, we conclude that there is two-way

causality between firm size and productivity. In this case, we find that the causality from firm

productivity to firm size dominates, although in a non-significant way.

The third example illustrates the additional ability of our transfer entropy test over stan-

dard proposals: with a subtle modification, the test can easily be used to examine causality
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relationships on panels that include qualitative time series that refer to categorical grades. In

particular, we examine the interactions between Fitch’s sovereign rating changes, the growth

rate of per capita GDP and interest rates from a panel of countries from 1994 to 2012. We fail to

detect significant causal relationships across these variables in the short term, which calls into

question the role sometimes attributed to rating agencies in the amplification of the business

cycles.

The rest of the article is structured as follows. In Section 2, we describe the extensions of

Granger causality tests to linear panel data, introduce some notation and present the symbolic

transfer entropy test for longitudinal data. In Section 3, we study the size and power of our

proposal by means of several Monte Carlo simulations that capture some of the data problems

that are common to large panels applications. In Section 4, we illustrate the usefulness of the

proposal by using three applications with real data from macro and micro panel data samples.

Section 5 concludes.

2 Granger causality for pooled data

2.1 Linear approaches

Let {yi,t}t∈Ii and {xi,t}t∈Ii be two real valued stationary time series, with t being the time index

taking values in the set Ii = {1, . . . , Ti} of cardinality Ti, where i is the cross-section unit, with

i = 1, . . . , N . Testing causality usually involves the regression of a fixed coefficient model with

fixed individual effects

yi,t = αi +
K∑
k=1

γikyi,t−k +
K∑
k=1

βikxi,t−k + εi,t, (1)

where individual errors εi,t are independently and normally distributed with mean 0, variance

σ2i , and are independently distributed across cross-section units.

While not claiming to be exhaustive, there are two significant contributions in the context of

Granger causality for panel data. Holtz-Eakin et al. (1988) assume that the unique heterogene-

ity between cross-section units is due to the fix effect αi, which implies γik = γk and βik = βk.

Then, the model is estimated by applying instrumental variables to the quasi-differenced au-

toregressive equations to avoid endogeneity problems. In this context, the procedure devoted

to determine the existence of causality is to test the null of absence of causality for all indi-

viduals in the panel, (βk = 0, for all k = 1, 2, . . . ,K) against the alternative that N causality

relationships exist (there exists 1 ≤ k0 ≤ K such that βk0 6= 0). The test statistic is computed

by comparing restricted and unrestricted sum of squared residuals, which has an asymptotic

chi-square distribution.

In a less restrictive context, Dumitrescu and Hurlin (2012) allow the coefficients to differ

across cross-section units, different lag orders, unbalanced panels and cross-sectional depen-

dence. In particular, under the non-causality null hypothesis, there is no causal relationships

for any of the units of the panel (βik = 0, for all k = 1, 2, . . . ,K, and i = 1, 2, . . . , N). Under

4



Symbolic transfer entropy test for causality in longitudinal data Camacho, Romeu, Ruiz-Maŕın

the alternative, there is at least one causal relationship in one cross-section unit (βik = 0, for

all k = 1, 2, . . . ,K, and i = 1, . . . , n1; and there exists 1 ≤ k0 ≤ K such that βik0 6= 0, for all

i = N1 + 1, . . . , N ; with N1 ∈ [0, N − 1]), which implies that rejecting the null does not exclude

that there is no causality for some N1 individuals.

These authors propose running the N individual regressions implicitly enclosed in (1). Then,

for each i, the proposal focuses on performing the F -tests of the K linear hypotheses βik = 0 to

retrieve the Wald statistics Wi, and computing the average of the N individual Wald statistics

W =
1

N

N∑
i=1

Wi. (2)

Under the assumption that the Wald statistics Wi are independently and identically distributed

across individuals, the average statistic sequentially converges in distribution to a standard

normal distribution

Z =

√
N

2K
(W −K) −→ N (0, 1) , (3)

where the asymptotic result requires that the time dimension goes to infinity and then the cross

section dimension goes to infinity.3

When both the time dimension and the cross section dimension are fixed, the authors propose

using the mean Wald statistic stated in (2) and the empirical critical values for the corresponding

sizes via stochastic simulations. In addition, under cross-sectional dependence, they mitigate the

negative impact on the small-sample properties of the test for alternative forms of dependence

by using bootstrapped critical values. In Section 2.3, we describe a block-bootstrap procedure

that calculates the bootstrapped critical regions at the desired confidence levels.

2.2 Symbolic analysis: definitions and notation

The basic idea of symbolic dynamics is very simple: divide the phase space into a finite number of

regions and label each region by a letter (a symbol) from a certain alphabet (a set of symbols).

Instead of following a trajectory point by point, one only keeps recording the alternation of

certain appropriate symbols, which, according to the results of Collet and Eckmann (2009), can

capture the complete description of the behavior of the dynamical system. In the particular

case of this paper, the basic block of analysis is the ordinal pattern because it only demands a

totally ordered set to be fully applicable.4

We start the notation by defining the symbolization procedure of the single real valued time

series {yi,t} and {xi,t}. For a positive integer m ≥ 2, usually known as the embedding dimension,

3Since the time dimension can be small in practice, the authors also provide an approximated standardized statistics
for a fixed T .

4To facilitate understanding, the Appendix shows several examples that help the reader unfamiliar with symbolic
dynamics to understand the basic concepts and definitions described in this section. An example of symbolization
based on a non ordinal pattern is analyzed in Section 4.3.
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we embed the time series in m-dimensional space as follows:

xim(t) = (xi,t, xi,t+1, . . . , xi,t+m−1), (4)

yim(t) = (yi,t, yi,t+1, . . . , yi,t+m−1). (5)

The m-dimensional histories yim(t) and xim(t) summarize the behavior of the time series in the

neighborhood of time t, accounting for m subsequent steps. For time series of length Ti only

T ∗i = Ti − m + 1 m-histories yim(t) and xim(t) can be obtained, where the total number of

m-histories is T ∗ = T ∗1 + . . .+ T ∗N .

Next, we denote by Sm the symmetric group of cardinality m!, which is the group formed by

all the permutations of length m. We refer to an element s = (s1, s2, . . . , sm) in the group Sm as

a “symbol”, where sj ∈ {0, 1, . . . ,m−1} with sj 6= sh for all j 6= h. The symbolization procedure

of the time series {yi,t} consists of mapping each m-history in {yim(t)}t≤T ∗
i
, for i = 1, . . . , N ,

into a unique symbol s ∈ Sm satisfying the two following conditions:

yi,t+s1 ≤ yi,t+s2 ≤ · · · ≤ yi,t+sm , (6)

sj−1 < sj if yi,t+sj−1 = yi,t+sj . (7)

In this case, we will say that yim(t) is of s-type. The first condition imposes the ordinal

pattern and the second condition guarantees the uniqueness of the symbol s for any time series.

The latter condition becomes irrelevant when the time series is associated with a continuous

distribution, such that equal values have a theoretical probability of occurrence of zero. The

symbolization procedure of the time series {xi,t} is obtained analogously.

The symbolization procedure of {yi,t} and {xi,t} implies converting the sequences of m-

histories {yim(t)}t≤T ∗
i

and {xim(t)}t≤T ∗
i

into sequences of ordinal patterns labeled by symbols,

{ζyim(t)}t≤T ∗
i

and {ζxim(t)}t≤T ∗
i
, respectively, where yim(t) is of ζyim(t)-type and xim(t) is of

ζxim(t)-type.

Given the time series {yi,t} and {xi,t} and an embedding dimension m, the probabilities of

the symbols in Sm are computed as their relative frequencies in {ζyim(t)}t≤T ∗
i

and {ζxim(t)}t≤T ∗
i
,

respectively. For example, the estimated probability of any symbol s ∈ Sm for {yi,t} is

pyim(s) =
] {t = 1, . . . , T ∗i | yim(t) is of s-type}

T ∗i
, (8)

where ] denotes the cardinality. Following Matilla-Garcia and Ruiz-Marin (2008), we define

the permutation entropy of {yi,t} as the Shannon entropy (Shannon, 1948) of the m! distinct

symbols as

hm(yi,t) = −
∑
s∈Sm

pyim(s) ln(pyim(s)), (9)

This quantity has a nice interpretation. The amount of information of every m-history forms

a random variable whose expected value, on average, is the Shannon entropy, which measures

the degree of uncertainty of the time series. It is always non-negative by construction and is

bounded by 0 ≤ hm(yit) ≤ ln(m!). The lower bound is attained for an increasing or decreasing
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sequence of values, such that only one symbol is sufficient to encode the ordinal pattern. The

upper bound refers to a completely random time series, where all the m! possible symbols appear

with the same probability.

Toward the analysis of causal relationships, we require a multivariate extension of this sym-

bolization procedure. In order to make it simpler, we consider the extension to a 2-dimensional

time series, although the case of n-dimensional time series implies a similar reasoning. For a

cross-section unit i, consider a 2-dimensional time series {yi,t, xi,t}t∈Ii . Assuming a fixed embed-

ding dimension m, we embed the vector of bivariate time series into m-dimensional sequences

{yim(t),xim(t)}t≤T ∗
i
.

In this setting consider the symbol space S2
m = Sm×Sm, which is the direct product of two

copies of the symmetric group Sm, whose elements are denoted by syx = (sy, sx). Then we say

that {yim(t),xim(t)} is of syx-type if and only if yim(t) is of sy-type and xim(t) is of sx-type,

forming the bi-dimensional sequence of symbols {ζyxim(t)}. Then, the estimated probabilities of

each symbol syx ∈ S2
m is estimated as

pyxim(syx) =
] {t = 1, . . . , T ∗i | (yim(t),xim(t)) is of syx-type}

T ∗i
. (10)

The Shannon entropy for the bi-dimensional series {yit, xit} is

hm(yit, xit) = −
∑

syx∈S2
m

pyxim(syx) ln(pyxim(syx)), (11)

which measures the amount of information common to both time series. One key concept to

analyze causality in multivariate time series is the conditional permutation entropy of {yi,t}
given {xi,t}. By definition, it is the result of averaging the conditional entropy of {yi,t} over all

possible values that xi,t may take. It can be shown that the following chain rule applies

hm(yi,t|xi,t) = hm(yi,t, xi,t)− hm(xi,t). (12)

The conditional entropy is zero when {yi,t} is completely determined by {xi,t}. Conversely, the

conditional entropy is equal to the unconditional entropy of {yi,t} when they are independent.

The generalization of this procedure to obtain any conditional entropy is straightforward.

For example, for any lag time period r, computing

hm(yi,t|yi,t−r, xi,t−r) = hm(yi,t, yi,t−r, xi,t−r)− hm(yi,t−r, xi,t−r), (13)

involves the following steps:

1. Map each element of {yi,t, yi,t−r, xi,t−r} and {yi,t−r, xi,t−r} into the symbol spaces S3
m =

Sm × Sm × Sm and S2
m = Sm × Sm, respectively. This leads to the sequences of sample

symbols {ζy,yr,xri,m (t)} and {ζyr,xri,m (t)}.

2. Estimate the relative frequencies of each of the different symbols in the symbol spaces S3
m

and S2
m by using the sequences of sample symbols {ζy,yr,xri,m (t)} and {ζyr,xri,m (t)}, respectively.
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3. Use the estimated probabilities to compute the Shannon entropy measures hm(yi,t, yi,t−r, xi,t−r)

and hm(yi,t−r, xi,t−r), and the conditional entropy as expression (13) describes.

2.3 A transfer entropy test of longitudinal data

The extension of causality tests to longitudinal data implies pooling the information contained

in the cross-sectional units.5 Using the approach of stacking the raw data of the time series on

top of one another involves managing blocks of stacked data. In particular, examining whether

values of x delayed r periods help in predicting actual values of y or whether values of y delayed

r periods help in predicting actual values of x requires handling with stacked vectors such as

{yt} = {y1,r, ..., y1,Ti , ..., yN,r, ..., yN,Ti},

{xt} = {x1,r, ..., x1,Ti , ..., xN,r, ..., xN,Ti},

{yt−r} = {y1,1, ..., y1,Ti−r, ..., yN,1, ..., yN,Ti−r},

{xt−r} = {x1,1, ..., x1,Ti−r, ..., xN,1, ..., xN,Ti−r}. (14)

Performing block exogeneity tests in the resulting pooled data would impose the restrictive

constraint that the time series relationship of x and y is the same for each cross-section units.

Undoubtedly, the constraint is likely to be violated in practice. This motivated Holtz-Eakin et

al. (1988) to allow for individual fixed effects and Dumitrescu and Hurlin (2012) to allow for

heterogeneous panel data models.

Instead, in this paper we propose pooling the corresponding set of symbols of the cross-

section units in order to examine the informational content of the pooled symbols of {xt−r}
on the pooled conditional entropy hm(yt|yt−r, xt−r). Computing this entropy would require

managing sequences of stacked symbols such as

{ζy,yr,xrm (t)} = {(ζy1,m(r + 1), ζyr1,m(1), ζxr1,m(1)), . . . , (ζyN,m(T ∗N ), ζyrN,m(T ∗N − r), ζ
xr
N,m(T ∗N − r))},

{ζyr,xrm (t)} = {(ζyr1,m(1), ζxr1,m(1)), . . . , (ζyrN,m(T ∗N − r), ζxr1,m(T ∗N − r))}. (15)

Needless is to say that the method requires the conversion of the m-histories into the sequences

of symbols for each cross-section unit to be stable across units. However, as we will show in the

section devoted to the Monte Carlo analysis, this is far from being a restrictive assumption.

Computing the pooled conditional entropy for the pool of symbols is very easy in practice

because it can be obtained by adding the conditional entropy of each cross-section unit. In the

previous example, the pooled conditional entropy, which is used to measure the potential gains

of using lagged values of x to predict actual values of y, is the sum of the conditional entropies

of the N cross-section units

hm(yt|yt−r, xt−r) =
N∑
i=1

hm(yi,t|yi,t−r, xi,t−r). (16)

5To keep the analysis simple, we limit this section to two-dimensional systems. Extending these concepts to larger
sets of time series is straightforward.
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To develop a causality test for the pooled data, we follow Schreiber (2000) to introduce the

Symbolic Transfer Entropy (STE), which measures the information transfer from {xt−r} to {yt}
given {yt−r}

STEx→y(m, r) = hm(yt|yt−r)− hm(yt|yt−r, xt−r). (17)

This quantity can be viewed as the reduction in uncertainty in predicting the current state

of yt (more precisely, the current symbol ζym(t)), by knowing those of yt−r and xt−r. A large

transfer entropy from x to y indicates that the past values of x help to predict current values of

y, whereas a small transfer entropy indicates that the current value of y is independent of the

past value of x. Thus, the transfer entropy offers a measure of Granger causality of x to y.

Under the null that x does not cause y, it follows that STEx→y(m, r) = 0, while STEx→y(m, r) >

0 otherwise. This is the basis to propose the following causality test procedure for longitudinal

data. Providing an exact or an asymptotic distribution of the statistic STEx→y(m, r) is certainly

difficult because the dynamic structure of the processes yt and xt may change the symbols’ dis-

tribution and thus the distribution of the entropy statistic. For this reason, we rely on bootstrap

methods, which require that null hypothesis of no causality remains in the re-sampled data to

ensure that the test remains asymptotically independent of these data. For this purpose, we

re-sample for each cross section unit the time series {yi,t} and {xi,t} independently.6

In particular, we rely on the stationary bootstrap of Politis and White (2004) to preserve

the dynamic structure of the time series in the re-sampled processes. Then, the bootstrap test

procedure consists on replicating the following steps a large number of times B:

1. Compute the value of STEx→y(m, r) for the original pooled time series {yt} and {xt}.

2. Sample {xbi,t} and {ybi,t} for i = 1, 2, . . . , N , by using the stationary bootstrap of Politis and

White (2004). For each cross-section unit, obtain the sequences of symbols {ζy,yr,xrm,b (t)},
{ζyr,xrm,b (t)}, {ζy,yrm,b (t)}, {ζyrm,b(t)}, compute the relative frequencies of the symbols, and

obtain the entropy measures hbm(yt|yt−r) and hbm(yt|yt−r, xt−r).

3. Use the latter sets of pooled symbols to obtain the bootstrapped realization of the symbolic

transfer entropy

STEbx→y(m, r) = hbm(yt|yt−r)− hbm(yt|yt−r, xt−r). (18)

4. Repeat (B − 1) times steps 2 and 3 to obtain B bootstrap realizations of the statistic,

{STEbx→y(m, r)}Bb=1.

5. Compute the bootstrap pb-value

pb =
1

B

B∑
b=1

I(STEbx→y(m, r) > STEx→y(m, r)), (19)

where I(·) is an indicator function taking the value 1 to a true statement and 0 otherwise.

6. Reject the null hypothesis that x does not cause y at a nominal level α if pb < α.

6Notice that pairwise re-sampling could preserve the underlying causality in the bootstrapped data.
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Testing the null that y does not cause x is performed in the same fashion.

A second problem in causality analysis is determining the direction of causality. Following

Caines, Keng and Sethi (1981), there are four possible situations in analysis of the causal

directions between x and y. The first case, the one-way causality of x to y, occurs when the

series x cause y but the series y does not cause x, which requires STEy→x(m, r) = 0 and

STEx→y(m, r) > 0. The second case, when there is one-way causality of y to x, y cause x but

x does not cause y, and implies STEy→x(m, r) > 0 and STEx→y(m, r) = 0. In the third case x

and y are independent, which implies STEy→x(m, r) = STEx→y(m, r) = 0. The last case refers

to two-way causality, which occurs when STEy→x(m, r) = STEx→y but STEy→x(m, r) > 0 and

STEx→y(m, r) > 0.

In the case of two-way causal relation between x and y, we may easily assess the direction of

the dominant information transfer between the time series. To this end, we introduce the Net

permutation Transfer Entropy (NTE) as follows:

NTExy(m, r) = STEy→x(m, r)− STEx→y(m, r). (20)

In this context, a positive value of NTExy(m, r) means that the net entropy transfer is from y

to x while a negative value of this statistic suggests the transfer is the other way around. When

NTExy(m, r) is zero, it indicates that either y and x are independent, which occurs whenever

STEy→x(m, r) = STEx→y(m, r) = 0, or that there is not a predominant direction of causality,

which requires STEy→x(m, r) > 0 and STEx→y(m, r) > 0.

Using the steps described above to compute the bootstrap symbolic causality test, testing

the direction of causality is straightforward. In the first step, NTExy(m, r) is computed as the

difference between STEy→x(m, r) and STEx→y(m, r). Repeating steps 2 to 4 provides a number

B of bootstrap net transfer entropy statistics NTEbxy(m, r). The p-value of the two-tailed test

of the null that NTExy(m, r) = 0 against NTExy(m, r) 6= 0 can be obtained by computing the

averaged number of times that |NTEbxy(m, r)| > |NTExy(m, r)|. In addition, the p-value of the

one-tailed test of the null that NTExy(m, r) = 0 against NTExy(m, r) > 0 can be obtained by

computing the averaged number of times that NTEbxy(m, r) > NTExy(m, r), whose rejection

indicates that the predominant direction of causality is from y to x.7

3 Simulation analysis

In this section, we propose several Monte Carlo experiments in order to assess how the Symbolic

Transfer Entropy test for causality described above performs in a finite sample of simulated

longitudinal data. In all cases, we take the embedding dimension m = 3. As a basis of

comparison, we also examine the performance of Holtz-Eakin et al. (1988) and Dumitrescu

and Hurlin (2012) causality tests in the context of panel data analysis. These two proposals are

referred to as HNR and DH henceforth, respectively.

7The one-tailed test whose rejection indicates that the predominant direction of causality is from x to y can be
obtained in the same fashion.
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3.1 Benchmark model

We start the experiment by generating data for yi,t by the homogeneous linear model outlined in

(1), which is labeled as HLIN. In each of the M = 1000 Monte Carlo simulations, we simulate N

vectors of explanatory variables xi and individual errors εi of constant size T from independent

Gaussian distributions with mean 0 and variances σ2εi = σ2xi = 1, for all i = 1, . . . , N , being

the total number of observations TN . With the aim of evaluating the effect of the number of

cross-section units N and the amount of time observation points T on the empirical size and

power of the causality tests, the experiment is carried out for values of (T,N) that correspond

to small (15, 30), medium (30, 60) and large (60, 120) data sets.

Without loss of generality, the individual fixed effects αi are set to zero and the effect of

heterogeneity across section units will be examined through the causality relationships, mea-

sured by βi. One implication of disregarding individual effects in the data generating process

of the experiment is that the HNR estimator reduces to a simple OLS/GLS estimate because

the procedure does not require first differencing. Nevertheless, we keep the HNR labeling in the

presentation of the results in this section to harmonize the notation with Sections 2 and 4.

For each pseudo sample, we generate the data by choosing yi0 = 0. The lag length of the

autoregressive processes, K, and the lag in the causal relationship, r, are set to one. For each

sample size, the autoregressive parameters γi are constant for all cross-section units, although

to assess the effect of the autocorrelation on the tests, its value is allowed to vary from none

γ = 0, to moderate γ = 0.3 and large γ = 0.9 autocorrelations.

In this baseline scenario, we keep the lagged dependent variable parameter β fixed across

units. In order to visualize its influence on the power of the tests, we rely on the power curves

that approximate the probability of rejecting the null of non-causality under the alternative of

causality as a function of β. For this purpose, we adopt the response surface strategy developed

by Box and Wilson (1951). For each run, we draw β from a uniform distribution on [0, 1], then

we compute the test statistics and record the outcome with a binary variable that takes the

value of one if the null of non-causality is rejected for a significance level of α = 0.05. Finally,

we plot the number of times that the tests reject the null over the total number of simulations

using a kernel-based estimate of the power curve.8

The reason to consider HLIN as the baseline model hangs upon the prospect that HNR

should behave optimally because all the assumptions that it requires for consistent and efficient

estimation are fulfilled within this specification. Namely, parameters are homogeneous across

section units, the functional form is linear, the causal relationships are in the means of the

process, and the disturbances are spherical. Then, the aim is to assess the cost of using DH or

STE even when the conditions would favor the use of HNR.

Figure 1 plots the power functions of HNR test, DH test and STE test against β for the

three different combinations of cross-unit and time-series sample sizes when γ = 0 (Panel A),

γ = 0.3 (Panel B) and γ = 0.9 (Panel C) at significance level α = 0.05. As expected, the figure

shows that HNR clearly outperforms the other two tests regardless of the size of N and T , the

8The power function measures the test size at the null β = 0 and approaches 1 as β meets the upper value. To
overcome low performance of the Gaussian kernel-based estimates at these endpoints, we adjusted the window width.
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values of the autocorrelation parameter γ, and the magnitude of the causality parameter β. The

superior performance is particularly evident when the size of the data set is small. In addition,

DH performs better than STE, although the differences in performance tend to decrease as

sample size increases.

3.2 Data problems

The rest of our Monte Carlo experiments are designed to analyze the size and power performance

of the symbolic transfer entropy causality test for longitudinal data in the presence of large cross-

section heterogeneity, non-linearity, structural breaks, outliers, and second-moment causality.

In practice, these data problems are the norm rather than the exception, particularly when the

number of cross-section units in the panel is high, such as in the case of The World Bank Open

Data, the Penn World Table or the US Bureau of Labor Statistics.

The first set of experiments allows for heterogeneity of the causality relationships under the

alternative. In particular, we consider a structural break in the impact of xt−1 on yt, in the sense

that in each simulation, half of the cross-section units are generated from β while the other half

use −β, with β drawn from a uniform distribution on [0, 2]. To facilitate comparisons, the rest

of the model parameters are calibrated as in the benchmark experiment. The achieved rejection

frequencies for the three different tests as a function of β, for a theoretical level of significance

of 0.05, are plotted in Figure 2. Regardless of the sample size and auto correlation parameter

values, the plots of the power functions show that HNR and DH tests suffers a dramatic loss in

power. Notably, the performance of HNR and DH dramatically deteriorates with the magnitude

of the cross-section structural breaks, measured by the magnitude of β, while the performance

of STE in terms of power is not much different from the benchmark setup.

Central to the benchmark model is the assumption that the causal relationship between

variables is linear in mean. However, there are many evidences of nonlinear causal relationships

between variables in economics (for example, Hsieh, 1991). To examine the effect of nonlinear-

ities in the causality tests, in the third experiment we generate data as

yi,t = yi,t−1xi,t−1 + εi,t, (21)

where β = 1, εi,t ∼ N(0, 1), and xi,t ∼ N(0, 1). By recursive substitution, we can find

that E(yi,t | xi,t−1 . . . , x0) = yi,0
∏t
s=1 xi,t−s. Therefore, the partial effect of xi,t−1 is given

by yi,0
∏t
s=2 xi,t−s, for i = 1, . . . , N . If x has average value of zero across sections, the estimate

of β in (1) tends to converge to zero although xi,t−1 indeed causes yi,t. Then, HNR is expected

to miss the causal relationship between x and y, although this drawback does not necessarily

affect DH and STE. In line with this reasoning, the performance of HNR in Figure 3 in terms of

power is very poor and far below that of DH and STE. Remarkably, although STE and DH have

comparative power for large sample sizes, STE clearly outperforms DH for small combinations

(N,T).

Due to a growing interest in dynamics of financial data, recent work on causality has also

addressed the issue of second order causality or causality in variance (Hafner and Herwartz,
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2008). We design the fourth experiment to examine the ability of the causality tests to detect

causal relationships in the second moment of the process. For this purpose, we generate data

as

yi,t = γyi,t−1 + εi,t, (22)

where εi,t ∼ N(0, |xi,t−1|), and xi,t ∼ N(0, 1). Figure 4, which displays the estimated probability

of rejection of the tests, shows the low performance of HNR when there is causality in variance

but no causality in mean. When the sample size is very low, DH performs slightly better than

STE. However, the performance of STE is superior to that of DH as the sample size increases

beyond (T,N)=(30,15).

Finally, panel data estimators can be strongly biased in the presence of a small percentage

of outliers (Bramati and Croux, 2007), which can have a large impact on causality analysis. In

the fifth experiment, we investigate the robustness of the three causality tests in the presence

of outliers in the longitudinal data. In this experiment, we pay attention to the case of block-

concentrated outliers as the situation in which the outlying observations are concentrated in few

time-series, which is very frequent in panels of economic data for which outliers are present for

few cross-section units while others are not contaminated at all. For this purpose, we generate

data as in the benchmark case but entering as outlying points the first observation of the first

cross-section unit and the last observation of the last cross section unit. In particular, we impose

y12 = x11 = −10 and yNT = xNT−1 = 10 and we plot in Figure 5 the empirical size of the three

causality tests. It is obvious that the distortion introduced by these two outliers in the sample

greatly bias the results of the HNR and DH tests leading to an oversize problem that worsens

as the sample size decreases. By contrast, the figure shows that STE is a robust test in the

sense that its empirical size is barely affected by the presence of outliers in the data set.

4 Empirical applications

As a practical illustration of our approach, we now analyze the causal relationships between

public expenditure and GDP, firm productivity and firm size, and sovereign credit rating and

economic fundamentals. Unless otherwise stated below, we perform the symbolic transfer en-

tropy tests for the embedding parameter m = 3.

4.1 Public Expenditure and GDP

The role of government spending in economic growth, and vice versa, has been a long-lasting

source of debate in economics, and has recently generated intense literature since the Reinhart

and Rogoff (2010) controversial contribution. Some economists argue that government spending

cause economic growth, either in a negative way, because large government expenditure leads to

public debt slowing growth, or in a positive way, because expansionary fiscal policies accelerate

economic activity. By contrast, some others support the alternative that it is economic growth

what causes public sector expenditures to expand as the budget constraints become less rigid

or to reduce as a policy of countercyclical response. This section attempts to provide a new
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contribution to this debate by examining the worldwide short-term causal relationship between

government spending and economic growth.

To this purpose, we have collected data from the World Bank Open Data, a free-access ser-

vice which processes a huge amount of macroeconomic data for a large set of countries around

the world. In spite of the interest of examining the causal relationships between expenditure

and growth in a world context, as the World Bank acknowledges, under-investment in national

statistical systems in some developing countries results in data of poor quality for these coun-

tries, which are often affected by some of the data problems described below, resulting in low

performance of standard causality tests for longitudinal data.9 In this context, we believe that

symbolic transfer entropy tests are the appropriate approaches to evaluate the causal relation-

ships between government spending and growth across a large set of countries.

The data cover the period from 1961 to 2016 at annual frequency for a set of 100 countries.

Regional areas and countries with less than one-third of observations were omitted from the

analysis. The measure of aggregate economic activity is GDP per capita (Gross Domestic

Product divided by midyear population).10 The measure of government expenses is general

government final consumption expenditure. Both aggregates are measured in constant 2010 US

dollars and are used in growth rates to deal with unit root issues.

Table 1 presents the basic results of the non-causality tests. Each panel corresponds to a

different lag length specification (from one to three years). In the first row, we examine causality

from the growth rates of government expenses (Exp) to GDP growth, then GDP to Exp, and

finally the net transfer entropy, i.e., the predominant direction of information transfer between

these two macroeconomic aggregates. According to expression (20), a negative value of this net

effect implies prevalence of Exp causing GDP growth while a positive value of the net effect

implies prevalence of GDP growth over Exp. To evaluate the statistical significance of NTE,

one and two tailed p-values are reported. Starting with HNR, the p-values reported in the

table show a rejection of the null hypothesis of non-causality of Exp to GDP, except when we

consider two lags and no causality from GDP to Exp. However, regardless of the lag length

that we consider, the p-values for DH show strong causality in both directions, from GDP to

Exp and from Exp to GDP.

Notably, our symbolic transfer entropy test suggests that causality between government

expenditures and growth is much more limited. For lags of one and three years, the p-values

of the null of noncausality are far above 0.05 regardless of whether we test causality from the

growth rate of government expenses to GDP growth or the other way around, which supports

the view that there is no causal effect between these two variables. If any, the entropy test only

detects one-way causality from GDP growth to the rate of growth of government expenditures

achieved with a lag of two years. This result complements those of De Vita, Trachanas and Luo

(2018), who also find no robust evidence of a long-run causal effect between debt and growth.

9To (partially) overcome this drawback, the World Bank has been leading initiatives such as Open Data for Devel-
opment (https://www.idrc.ca/en/initiative/open-data-development), a partnership of several institutions to promote
the deployment of open data in developing countries.

10GDP is the sum of gross value added by all resident producers in the economy plus any product taxes and minus
any subsidies not included in the value of the products. It is calculated without making deductions for depreciation
of fabricated assets or for depletion and degradation of natural resources.
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4.2 Firm productivity and size

Gauging the firm-specific determinants of firm productivity is an important research issue in

productivity and growth literature. Focusing on firm size, Diaz and Sanchez (2008) argue

that firm size could tend to reduce firm productivity due to the increase in organizational and

managerial complexity. However, larger firm size could also foster productivity growth because

large size firms are more accessible to market and technology (Biesebroeck, 2005) and take

advantage of all the increasing returns associated with R&D (Pagano and Schivardi, 2003). By

contrast, it might be the case of reverse causality if, as in most of the empirical literature on

cross-country growth, large productivity creates larger firms.

In this section, we use our symbolic transfer entropy test to examine the causal relationships

between firm size and productivity growth in a longitudinal data set. For this purpose, we

look at the industry-level annual data provided by the US Bureau of Labor Statistics Current

Employment Statistics survey. To classify the data, we follow the four-digit industry format

of the North American Industry Classification System (NAICS). The effective sample period is

1988 to 2015 and the data set comprises a total of 86 industries.

Productivity data refers to multifactor productivity, which is a measure that represents

the amount of goods and services that can be produced relative to the amount of various

measured inputs such as labor, capital, and intermediate purchases that are consumed or used

to produce those goods and services. As a measure of firm size, we use the number of employees,

which represents the total number of wage and salary workers, self-employed workers, and

unpaid family workers working at various occupations (jobs) within business establishments.

An individual who works multiple jobs at separate establishments would have each job included

in the number of employees.

Both series appear to be non-stationary in levels but stationary in the first differences for

logarithmic form. Since we are interested in examining the short-term dynamics, the causality

tests, whose results are displayed in Table 2, are conducted by using the time series in growth

rates. Our findings can be summarized in the following way. Both HNR and DH detect some

short-term evidence of bi-directional causality between firm size and productivity, which appears

only at a one-period lag. However, STE detects bi-directional causality regardless of the lag

length that we consider. The negative differences between the pairwise instances of transfer

entropy measures mean that the symbolic transfer entropy is from firm size to firm productivity,

although the p-values of the null of symmetric information flow indicate that the net transfer

is not statistically significant at any lag length.

4.3 Credit rating and economic fundamentals

The global credit rating agencies have come under intense scrutiny regarding their sovereign debt

ratings in the wake of the Great Recession. The controversy on the role of rating agencies raised

when public debt of crisis-hit countries were relegated to the lowest status and the agencies also

downgraded the credit worthiness of many solvent countries, mainly major Eurozone economies,
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which could have accelerated the Eurozone sovereign debt crisis.11

In this context, a line of research focuses on the influence of rating changes into economic ag-

gregates and financial markets. While not claiming to be exhaustive, Kaminsky and Schmukler

(2002) find that changes in rating have a significant impact on yield spreads and stock returns.

According to Brooks et al. (2004), it is rating downgrades rather than rating upgrades that is

driving a negative wealth impact on both the domestic stock market and the dollar value of the

country’s currency.

Besides, some studies focus on examining whether sovereign ratings respond to changes in

economic and financial fundamentals. Among others, Broto and Molina (2016) show that ratings

react to changes in GDP growth and US short-term rate, although their relevance as leading

indicators for sovereign ratings changes depends on the underline specification used to obtain

these results.

The analysis developed in this section complements these studies by examining the causal

relationships between economic fundamentals and sovereign debt ratings. Moreover, this section

illustrates the additional ability of our transfer entropy test over standard proposals to examine

causality relationships on panels that can include qualitative time series that refer, for example,

to categorical grades. With a slight modification, the techniques developed in this paper for

ordinal patterns are still valid in this setup.

To achieve our objective, we collect the data on sovereign debt ratings of Fitch’s foreign

currency rating, which reflects the sovereign’s ability and willingness to service its debt in

foreign currency. Ratings grade countries’ ability to meet its financial obligations according to

a letter grade. The highest and safest grade is AAA, with lower grades moving to double and

then single letters (AA or A) and down the alphabet from there to D, which implies entering

into bankruptcy. The modifiers arithmetic symbols “+” and “-” denote relative status within

major rating categories (for example, the rating category AA has three rating levels, AA+, AA,

and AA-).

For sovereign debt ratings, we propose the following symbolization technique. First, we

construct a country specific time series zi,t that takes the value of -1 if Fitch downgrades

country i rating in year t, the value of 0 if its rating is unchanged, and the value of 1 if its

rating is upgraded. Then, symbols are used in the analysis as categorical instead of as ordered

variables. Now, we take the embedding dimension m = 1 to build a 1-dimensional history ζzim(t)

that reflect the annual changes in rating grades. With this modification, the symbolic transfer

entropy test for longitudinal data described in the paper can easily be applied in this context.12

To examine the interactions between sovereign ratings and economic activity, we use the

growth rate of per capita GDP, provided by the panel World Bank Open Data as in Section

4.1. The impact of sovereign ratings on the financial sector is examined by using real interest

rate also provided by the panel World Bank Open Data, defined as the lending interest rate

11Ferri, Lui and Stiglitz (1999) find a procyclical behavior of rating agencies, which could magnify the effects of
booms and busts.

12As a robustness check, we also performed the analysis using m = 2 and m = 3 with and without ordering pattern.
The results and main conclusions did not imply a qualitative change with respect to those presented in the paper and
are available from the authors upon request.
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adjusted for inflation as measured by the GDP deflate. The GDP panel comprehends annual

data of 99 countries from 1994 to 2012, while the real interest rates panel contains observations

of 47 countries for the same period.

Table 3 shows the results for the one-way transfer entropy tests and the net transfer en-

tropy tests between the sovereign rating changes and the economic activity, as measured by

GDP growth (left panel), and the financial market, as measured by interest rates (right panel).

According to the p-values reported in this table, which are above 0.05 in all cases, we failed

to detect significant causal relationships either between rating changes and growth or between

rating changes and interest rates. This result is consistent with the view that rating decisions

add value in providing new information to economic and financial markets which is not already

reflected in other economic aggregates and market prices. In addition, this result does not sup-

port the potential role in amplifying the negative effect of recessions sometimes attributed to

credit rating.13

5 Conclusion

Recent advances in Granger causality have extended this analysis to the context of longitudinal

data by imposing coefficient restrictions that can be easily tested using relatively standard

techniques in the context of linear panel data. Two significant contributions that follow this

approach are Holtz-Eakin et al. (1988) and Dumitrescu and Hurlin (2012).

In spite of their simplicity, the size and power of these tests can be seriously deteriorated

when the linearity assumption breaks down, when the data generating process is heterogeneous

across the cross-section units, or when there are structural breaks or extreme observations in

some of the cross-section units. In addition, these techniques are unable to offer a simple solution

to handling qualitative time series data that refer, for example, to categorical grades.

In this paper, we translate the problem into symbolic dynamics and propose a non-parametric

causality test based on the concept of transfer entropy. We check the robustness of our test with

several Monte Carlo experiments under different scenarios. Our results indicate that the test

displays correct size in situations where linear tests fail and increased power to detect causality.

Besides its robustness, the test is simple to implement and we advocate for its generalized use

as a complementary tool in causality analysis. We illustrate the usefulness of our proposal by

analyzing the dynamic relationships between public expenditure and GDP growth, between firm

size and firm productivity, and between changes in Fitch’s sovereign ratings and GDP growth

and between these rating changes and interest rates. In the first case, we find very limited, if

any, causality of GDP to public expenditure and not the other way around. In the case of firm

size and productivity, we find bidirectional causality with no predominant causation. Finally,

13Some authors such as Kiff at al, (2010) find that the market impact of credit rating may be affected by the
pre-rating warnings rather than the actual rating changes. To test this extreme, we recoded the series of Fitch’s
credit rating warnings for the same period using the symbols 0 to 5 to denote “No warning”, “Negative, “Rating
watch negative”, “Stable”, “Rating watch positive”, and “Positive” announcements respectively, and we conducted
the symbolic transfer entropy test. Although we omit the results to save space (they are available upon request), they
show again no clear casual relationship in any direction.
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in the case of credit rating and GDP growth or interest rates, we find no relevant causality

relationship between credit rating and the economic and financial magnitudes in any direction.
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Appendix. Ordinal Pattern and Entropy, a simple ex-

ample

Consider the finite time series {yt} of seven values

{y1 = 3, y2 = 9, y3 = 7, y4 = 6, y5 = 5, y6 = 10, y7 = 4}. (A.1)

Using an embedding dimension m = 3, the 3-dimensional histories y3(t), for t = 1, . . . , 5 are

{y3(t)} = {(3, 9, 7) , (9, 7, 6) , (7, 6, 5) , (6, 5, 10) , (5, 10, 4)} . (A.2)

For m = 3, the symmetric group is

S1
3 = {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}. (A.3)

Each one of the five 3-histories y3(t) can be uniquely mapped into a symbol in S1
3 . For example,

for t = 1 we have that y3(1) = (3, 9, 7) and y1 = 3 < y3 = 7 < y2 = 9, which implies that y3(t)

is of (1, 3, 2)-type. Following in the same fashion, the sequence of symbols in this example is

{ζyi3 (t)} = {(1, 3, 2) , (3, 2, 1) , (3, 2, 1) , (2, 1, 3) , (3, 1, 2)}. (A.4)

The probabilities of the symbols in S1
3 , are computed as their relative frequencies in {ζy3 (t)}.

Then, the estimated probabilities are p (1, 2, 3) = 0, p (1, 3, 2) = 1
5 , p (2, 1, 3) = 1

5 , p (2, 3, 1) =

0, p (3, 1, 2) = 1
5 , and p (3, 2, 1) = 2

5 . Using these probabilities, the permutation entropy is

h3(yi,t) = −31
5 ln(15)− 2

5 ln(25) ≈ 1.332.

Now, consider the time series {xi,t} that also takes seven values

{x1 = 2, x2 = 8, x3 = 5, x4 = 4, x5 = 1, x6 = 2, x7 = 3}. (A.5)

In the same way, the permutation entropy is h3(xt) ≈ 1.332.

From these two Universities time series, the bivariate time series {yt, xt} is

{(3, 2), (9, 8), (7, 5), (6, 4), (5, 1), (10, 2), (4, 3)}. (A.6)

The sequence of symbols in this example is

{ζyxi3 (t)} = {[(1, 3, 2), (1, 3, 2)], [(3, 2, 1), (3, 2, 1)], [(3, 2, 1), (3, 2, 1), [(2, 1, 3), (2, 3, 1)], [(3, 1, 2), (1, 2, 3)]}.
(A.7)

Using this sequence of symbols, the estimated probabilities for all the symbols in S2
3 are zero,

with the exception of p([(1, 3, 2), (1, 3, 2)]) = 1
5 , p([(1, 3, 2), (1, 3, 2)]) = 2

5 , p([(2, 1, 3), (2, 3, 1)]) =
1
5 , and p([(3, 1, 2), (1, 2, 3)]) = 1

5 . The permutation entropy is h3(yt, xt) = −31
5 ln(15)− 2

5 ln(25) ≈
1.332. In this example, the conditional entropy is h3(yt|xt) = h3(yt, xt)− h3(xt) = 0.
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Table 1: Causality tests: Governement expenditure and growth

HNR DH STE
Direction Stat p-value Stat p-value Stat 1-tail pval 2-tail pval

Panel A: r = 1
Exp→GDP -3.242 0.001 5.703 0.000 0.008 0.240 -
GDP→Exp 1.441 0.150 17.815 0.000 0.008 0.165 -

Net (Exp - GDP) - - - - -0.001 0.455 0.820
Panel B: r = 2

Exp→GDP 1.376 0.169 7.223 0.000 0.018 0.290 -
GDP→Exp 0.166 0.868 22.069 0.000 0.024 0.005 -

Net (Exp - GDP) - - - - -0.005 0.050 0.110
Panel C: r = 3

Exp→GDP -2.397 0.017 6.065 0.000 0.017 0.520 -
GDP→Exp -0.750 0.453 10.386 0.000 0.019 0.320 -

Net (Exp-GDP) - - - - -0.001 0.345 0.700

Notes. Columns labeled as HNR and DH show the results of Holtz-Eakin, Newey, and Rosen

(1988) and Dumitrescu and Hurlin (2012) causality tests for longitudinal data. Last column

show the results of the Symbolic Transfer Entropy (STE) causality test and the one-tailed and

two-tailed net transfer entropy test.
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Table 2: Causality tests: Firm size and productivity

HNR DH STE
Direction Stat p-value Stat p-value Stat 1-tail pval 2-tail pval

Panel A: r = 1
Size→TFP -6.850 0.000 6.189 0.000 0.025 0.005 -
TFP→Size 3.150 0.002 6.471 0.000 0.026 0.000 -

Net (Size - TFP) - - - - -0.001 0.510 0.925
Panel B: r = 2

Size→TFP 1.126 0.260 1.469 0.315 0.057 0.000 -
TFP→Size -1.430 0.153 -0.237 0.855 0.053 0.000 -

Net (Size - TFP) - - - - -0.004 0.290 0.570
Panel C: r = 3

Size→TFP 0.358 0.720 0.704 0.580 0.049 0.010 -
TFP→Size -0.122 0.903 0.073 0.945 0.049 0.010 -

Net (Size - TFP) - - - - -0.001 0.450 0.905

Notes. See notes of Table 1.
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Table 3: Causality tests: Fitch sovereign rating, GDP growth and interest rate

GDP growth Interest rate
Direction Stat 1 p-value 2 p-value Direction Stat 1 p-value 2 p-value

Panel A: r = 1
Rating→GDP 0.017 0.060 - Rating→I. Rate 0.026 0.650 -
GDP→Rating 0.025 0.115 - I. Rate→Rating 0.033 0.895 -

Net effect -0.008 0.610 0.610 Net effect -0.007 0.735 0.740
Panel B: r = 2

Rating→GDP 0.028 0.890 - Rating→I. Rate 0.075 0.260 -
GDP→Rating 0.023 0.500 - I. Rate→Rating 0.035 0.930 -

Net effect 0.005 0.825 0.830 Net effect 0.040 0.095 0.095
Panel C: r = 3

Rating→GDP 0.035 0.675 - Rating→I. Rate 0.064 0.925 -
GDP→Rating 0.024 0.465 - I. Rate→Rating 0.033 0.995 -

Net effect 0.011 0.580 0.580 Net effect 0.031 0.435 0.435

Notes. See notes of Table 1.
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Figure 3: Power functions: nonlinear causality

N= 30; T=15
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N= 120; T= 60
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Notes. See the notes of Figure 1. In this case, we generate data as yi,t = yi,t−1xi,t−1 + εi,t,

where εi,t ∼ N(0, 1) and xi,t ∼ N(0, 1).

Figure 4: Power functions: causality in variance

α= 0.0; N= 30; T= 15

α= 0.0; N= 60; T=30
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Notes. See the notes of Figure 1. In this case, we generate data as yi,t = γyi,t−1 + εi,t,

where εi,t ∼ N(0, |xi,t−1|) and xi,t ∼ N(0, 1).
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Figure 5: Size functions: the effect of outliers
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Notes. See the notes of Figure 1. In this case, we generate data as yi,t = γyi,t−1 + εi,t, where

εi,t ∼ N(0, 1), and we impose y12 = x11 = −10 and yNT̄ = xNT̄−1 = −10.

28


