Por favor, use este identificador para citar o enlazar este ítem:
https://doi.org/10.1016/j.jsb.2014.02.015


Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Martinez-Sanchez, Antonio | - |
dc.contributor.author | García, Inmaculada | - |
dc.contributor.author | Asano, Shoh | - |
dc.contributor.author | Lucic, Valdan | - |
dc.contributor.author | Fernandez, Jose-Jesus | - |
dc.date.accessioned | 2023-11-27T08:25:57Z | - |
dc.date.available | 2023-11-27T08:25:57Z | - |
dc.date.issued | 2014-04 | - |
dc.identifier.issn | 1047-8477 | - |
dc.identifier.uri | http://hdl.handle.net/10201/136083 | - |
dc.description | © 2014. Elsevier. This document is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ This document is the Accepted version of a Published Work that appeared in final form in Journal of Structural Biology. To access the final edited and published work see https://doi.org/10.1016/j.jsb.2014.02.015 | es |
dc.description.abstract | Electron tomography enables three-dimensional (3D) visualization and analysis of the subcellular architecture at a resolution of a few nanometers. Segmentation of structural components present in 3D images (tomograms) is often necessary for their interpretation. However, it is severely hampered by a number of factors that are inherent to electron tomography (e.g. noise, low contrast, distortion). Thus, there is a need for new and improved computational methods to facilitate this challenging task. In this work, we present a new method for membrane segmentation that is based on anisotropic propagation of the local structural information using the tensor voting algorithm. The local structure at each voxel is then refined according to the information received from other voxels. Because voxels belonging to the same membrane have coherent structural information, the underlying global structure is strengthened. In this way, local information is easily integrated at a global scale to yield segmented structures. This method performs well under low signal-to-noise ratio typically found in tomograms of vitrified samples under cryo-tomography conditions and can bridge gaps present on membranes. The performance of the method is demonstrated by applications to tomograms of different biological samples and by quantitative comparison with standard template matching procedure. | es |
dc.format | application/pdf | es |
dc.format.extent | 54 | es |
dc.language | eng | es |
dc.publisher | Elsevier | es |
dc.relation | This work has been partially supported by the Spanish MICINN and MINECO (TIN2008-01117, TIN2012-37483, EEBB-I-12-04696), J. Andalucia (P10-TIC-6002, P11-TIC-7176), in part thanks to Euro- pean Reg. Dev. Funds (ERDF). A.M.-S was a fellow of the Spanish FPI programme. | es |
dc.rights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Segmentation | es |
dc.subject | Image processing | es |
dc.subject | Electron tomography | es |
dc.subject | Membrane | es |
dc.subject | Tensor voting | es |
dc.subject | Steerable filters | es |
dc.title | Robust membrane detection based on tensor voting for electron tomography | es |
dc.type | info:eu-repo/semantics/article | es |
dc.identifier.doi | https://doi.org/10.1016/j.jsb.2014.02.015 | - |
dc.contributor.department | Departamento de Ingeniería de la Información y las Comunicaciones | - |
Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Robust membrane detection.pdf | 2,2 MB | Adobe PDF | ![]() Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons