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Abstract

Electron tomography enables three-dimensional (3D) Vizatéon
and analysis of the subcellular architecture at a resaiutioa few
nanometres. Segmentation of structural components fres&D
images (tomograms) is often necessary for their interpogtaHow-
ever, it is severely hampered by a number of factors thatrdrerent
to electron tomography (e.g. noise, low contrast, distajti Thus,
there is a need for new and improved computational methofis to
cilitate this challenging task. In this work, we present &wmeethod
for membrane segmentation that is based on anisotropi@geation
of the local structural information using the Tensor Votaigorithm.
The local structure at each voxel is then refined accordirtheadn-
formation received from other voxels. Because voxels lighanto
the same membrane have coherent structural informatieryriler-
lying global structure is strengthened. In this way, locébrmation
is easily integrated at a global scale to yield segmentedtsires.
This method performs well under low signal-to-noise rayipically
found in tomograms of vitrified samples under cryo-tomogseqon-
ditions and can bridge gaps present on membranes. The parice
of the method is demonstrated by applications to tomogrdriisier-
ent biological samples and by quantitative comparison stiéimdard

template matching procedure.
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1. Introduction

Electron tomography (ET) enables three-dimensional (3BJalization and
analysis of the subcellular architecture and macromoégariganization of cells
and tissues in situ at a resolution of a few nanometeusi€ et al, 2013. This
technique involves the acquisition of electron microscpmjection images of a
specimen at dierent orientations. These images are then combined by noéans
tomographic reconstruction methods to yield the 3D voluResrfandez2012).

Segmentation of the 3D volume into its constitutive streatelements is key
for their interpretation. However, it proves to be challemggbecause of a number
of factors such as the crowded cellular environment, thimdien caused by the
missing wedge and noise, which is particularly high in ETwhf hydrated and
vitrified samples (cryo-ET)\olkmann 201Q Fernandez2012. Thus, segmen-
tation constitutes a major bottleneck in ET, especiallyhose studies intended
to visualize the subcellular architecture under cryo-domals. Although several
computational segmentation methods have been presemee has shown gen-
eral applicability yet. As a consequence, manual segmentatstill a method of
choice.

Software packages often used in ET have been graduallydimgitsegmen-
tation procedures based on the most known computationhhimgees (Water-
shed transform and thresholdingo(kmann 2002 Cyrklaff et al, 2009). This
makes segmentation a semi-automatic process, thus d#aijtits use. In the
last several years, there have been significant advancasdewomputational de-
tection of specific structural features within tomogranige membranous struc-
tures, filaments and microtubulekepbink et al, 2007 Sandberg and Brega
2007 Moussavi et al.201Q Nurgaliev et al. 201Q Rigort et al, 2012 Weber
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et al, 2012. Many of these methods rely on some sort of template magchin
That is, they search for a template that is suited to the tadgeature, typi-
cally by means of cross-correlation techniques. In cohtmathese methods, we
have recently developed afidirential geometry-based segmentation that is par-
ticularly suited for membranedartinez-Sanchez et alk011 2013. We first
proposed a method that uses a local membrane detector bagbe dlessian
tensor Martinez-Sanchez et ak017J). Later, we improved this detector and ex-
tended the abilities of the framework to characterize amdsity the detected
membranous structurebl@rtinez-Sanchez et aR013. Nevertheless, this local
membrane detector still presented several limitationsné&g, gaps that may ap-
pear on membranes due to experimental imaging conditiome wat properly
filled. Also, membrane-attached structures were not disthand were instead
segmented as part of the membranes. A non-trivial postpsiog stage was re-
quired in these cases to actually extract the membranesdxiglally, the detector
used was suitable for membranes with ridge-like (i.e. lazakimum) profile, and
was therefore unable to identify edge-like structures. (engmbrane of vesicles
having dense interior).

In this work, we propose a more robust local membrane detetihe method
is based on broadcastingf@irential information through the 3D space using the
Tensor Voting algorithmTong et al, 2004). In this way, nearby voxels that belong
to the same membranous structure enhance each othertsisfurcformation. As
a result, the new local detector can fill the gaps present anbrenes, disregards
structures apposed to the membranes, and it is more rolaisssatpw signal-to-
noise ratio, thus simplifying the postprocessing stagehikwork we also show

that membranes having ridge-like and edge-like profilesbeadetected using the
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same procedure butftierent tensor that provides theftérential information.

2. Background on local membrane detection

2.1. Hessian tensor-based detection

It is assumed that, at a local scale, a membrane can be mibdslle plane-
like structure with membrane density profile (in the direntperpendicular to
the membrane) following a Gaussian function. That is, thenbrane profile is
ridge-like, its density decreases as a function of the degtdrom the center of the
membrane.

Membrane detection starts with the application of a scpées operation on a
greyscale volume, typically implemented as Gaussian lassffiltering. This step
is used to isolate the information at a given saaleéhus filtering out noise and
all features smaller than the scale. An additional benetitisfstep is that scale-
space can smooth membranes making their profile closer tesizau Typically,
o is setto the thickness{pressed in voxe)®f the targeted membranklértinez-
Sanchez et gl2011).

Previously, our local detector for ridge-like membranes Wwased on the Hes-
sian tensor Nlartinez-Sanchez et al2011). This tensor provides information
about the second order density variation, as it is defined as:

PL PL L
X2 Oxdy  Ox0z
2 2 2
H=|d#L &P 2L 1
oxoy  0y2  oyoz ( )

AL PL P
oxoz oyoz 072

whereL denotes the volume after the scale-space operatioﬁ%nﬂ, j € (XY, 2

are its second order partial derivatives. As a result of igereanalysis of the
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Hessian tensor, three orthogonal eigenvec®end their corresponding eigen-
values 1; (representing second order derivatives al@f)gare obtained, which
characterize the local structure around any voxel of themel If we assume
|11l > |25 > |43, then the first eigenvectonr, i.e. the one whose eigenvalue
exhibits the largest absolute value, points to the direaticthe maximum curva-
ture. If the local structure is a plang, points to the direction perpendicular to the
plane and the following relationship holthg| >> |1,| ~ |13]. This led us earlier
to propose a local detector (so-called membrane streijtldefined as follows
(Martinez-Sanchez et ak011):

(al= VA213)?
I 0
0 otherwise

where|VL| denotes the gradient of the volurheresulting from the scale-space
operation.

We used two additional steps to detect peak$/o€orresponding to mem-
branes. A thresholtl, overM was imposed to select membrane-like voxels. This
was then coupled with the non-maximum suppression (NM$roon which se-
lects only the ridge points (i.e. the local maxima in the clien perpendicular to
the membrane). The use of NMS results in detected membranegtepresented
as one-voxel thick surfaces in the 3D space. In summary,ated detector for
ridge-like membranes is given by the following equatibfaftinez-Sanchez et al.
2013, where the first condition represents NM3s a small number and € R®

denotes a voxel of the volume:

(L(X) > L(x = 6vy)) and(L(x) > L(X + 6Vy))
M(X) > v

3)
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2.2. Structure tensor to detect edge-like membranes

The detector defined in the previous section can detect-tidlgenembranes,
but it is not suitable for the detection of membranes witheslike profile where
density on one side of the membrane is similar to that of thebrane (e.g. those
presented by a densely filled vesicle). Consequently, a megctbr for this type
of membranes is required. To this end, we focus our atteritidhe Structure

tensor Weickert 1998, also known as the second moment tensor, which is given

by:
ox oxady  Ox oz

2
—|aLaL (L) aLaL
J ox oy (Oy) oy oz (4)
aLoL Lol (@)2
oX 0z ay 0z 0z

where% Yi € (XY, 2) are the first order derivatives of the scale-spaced volume
L. The eigen-analysis of this tensor proceeds as in the pre\dase Kernandez
and Li, 2003 2005. The first eigenvectov;, i.e. the one whose eigenvalue ex-
hibits the largest value, points to the direction of the maxin variation. Also,

a local plane satisfigd,| >> |1,] ~ |13]. However, the Hessian and Structure
tensors dfer regarding the exact position of the detected surfacea Fdge pro-
file L, the local maximum of the largest eigenvaly&|j of the Hessian tensor
corresponds to the maximum b&f (Figure 1(Left)). For an edge profilé, the
local maximum of the largest eigenvalug() of the Structure tensor corresponds
to the inflection point oL (Figure 1(Right)). Consequently, the Structure tensor
is well suited to detect edge-like local structures. Moe¥pthe output of this
edge detector is equivalent to the output of the Hessiaaebdstector (red curves
in Figure1). This means that the eigen-analysis of the Structure teaiBaws

detection of edges and their conversion into ridges. Thisuin, enables appli-
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cation of all our ridge-based methodology to detect mendwavith edge profile.
Therefore, the ridge-like profiles detected by the Hesbiased detector and the
edge-like profiles detected by the Structure tensor-basegttbr can be further
processed in the same way.

In this work, first and second order derivatives requiredtfi@ components
of the tensors have been implemented based on centieleticeskrangakis and
Heger| 2001).

3. Tensor Voting

In this section, the theoretical background on Tensor \gofirV) is presented.
Our aimis to apply TV to enhance surface- or plane-like $tmas, such as mem-
branes in tomograms. In order to benefit from #icent implementation of the
TV algorithm in 2D, and because of the high computational aletls presented
by TV in 3D we chose to apply TV on tomographic slices. Thisuported by

the fact that membranes in tomograms appear as curves ingiegplMartinez-

Sanchez et al201]). Thus, we proceed by using TV to detect curves on the slices.

In our procedure, TV is applied to all slices along all thresganaxes. Therefore,
in this section 2D TV algorithm and arffieient implementation of this algorithm

are presented.

3.1. Introduction to Tensor Voting

Tensor Voting is a technique used in computer vision for sbhdentifica-
tion of salient features, which exhibits excellent perfarmoe under particularly
challenging noise conditiondAedioni et al, 2000. In TV, voxels propagate in-
formation about their local structural features acros# theighbourhood. The

local properties at each voxel are then refined accordingedrtformation re-
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ceived from the neighbours. The aim is that voxels that liptorthe same global
feature (e.g. a surface or membrane in our casech are represented as curves in
2D), and thus have coherent structural information, stresrgtérach other’s con-
tribution to the underlying global structure.

There are several important concepts and steps involved/irépresenta-
tion of the local structural information, the initializati of that information, the
propagation through votes, the gathering of votes and rafné of the local in-

formation. They will be described in the following sections

3.1.1. Data representation

In TV the local structural information at each voxel is reggeted by a sym-
metric non-negative definite second order tensor. Thisoteabows encoding
saliency of diterent types of geometric structurésirves and blobs in the 2D
case) by its eigenvalueg,(and A,, with 1; > A, > 0), and the corresponding

eigenvectorsy; andv,):

txx txy /ll O T
T= = [\71 \72] [\71 \72] . ()
0 A

Geometric structures can be detected from this tensor asiloled in the pre-
vious section for the Structure tensor and Hessian tefRgonéndez and [ 2003
2005 Martinez-Sanchez et aR011, 2013, but converted to the 2D cas&hus,
voxels belonging to a local curve have >> A,, with V; in the direction per-
pendicular to the curve, and the terln— A, represents the curve saliencgt
voxels that do not show a clear structure (blob-like), tve eigenvalues have
similar magnitude. The concept of saliency can be undedstasdhe likelihood of

a voxel to belong to one of the basic geometric features.

10
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It is useful to decompose the tensor in order to reveal btteediterent types

of saliency as follows:

T= /11\71\71 + /12\72\7—2r = (/ll - /12)\71\7'{ + /12(\71\71 + \72\7;) (6)

In this decomposition, théwvo terms are called stick and ball components,
respectively fedioni et al, 200Q Tong et al, 2004). In a voxel belonging to a

curve the stick component dominates because of the high salieney,. In the

extreme caseld; > 0 and, = 0, so only the stick component remains. Such a

tensor is then referred to as stick tensor, and it encodeseaqual curvewith
saliencyd; and the normal vectar,.

Saliency of the stick component of a 2D tendomnd the direction of the
corresponding vector with respect to the x-axis can be Gled analytically, as
follows (Franken et a).2006):

S(T) = 41— A = VI(TZ=4det) = (b - ty)? + 48, (7)

«(T) = arccosV{y - &) = % arg Gxx — tyy + 2ityy) (8)
Here, tr{T) and det{) denote the trace and determinant of the matfrixespec-
tively, - is the dot product, represents the imaginary unit (i.é.= —1) and arg()
is the phase of a complex number.
3.1.2. Initialization and generation of the input tensofdie
Tensors in TV are typically initialized to isotropic ballise( equal eigenval-

ues) or estimated from prior knowledge if availabléedioni et al, 200Q Tong

et al, 2004). In this work, we are interested in detectingrve-like structures in

11
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the 2D tomographic slices. Thus, for each input 2D sliceesttbp to TV, Hes-
sian or Structure tensors are calculated and the inputttéesibis created as the
pure stick component of the eigen-decomposition of theaefisld. Namely, the
eigenvectors of the input tensor field akeVi, while the saliency i$1; — 15| so

that:

T = |41 — WV] 9)

This defines an input tensor fieldx), with x denoting the voxel coordinates, that
represents the preliminary estimated likelihood of eackelion the input slice

to belong to acurve Tensor Voting procedure refines the tensor information at
each voxel by propagating the tensors to the neighbourtegresented in the

following subsections.

3.1.3. Voting mechanism

Voxels communicate among themselves by propagating irdbom between
each other by a process called voting. The information phissa second order
tensor called vote, which is sent from a voter voxel to a reevoxel. In this
work, votes are based solely on stick tensors because thgyiimrmation about
curves A vote is propagated along an arc of a circle that contaitervd and
receiverx and is perpendicular to the vector that defines the oriemaif the
vote at the voter point (Figur&A)). The propagation of the vote from voterto
receiverx induces the transformation of the stick tensor accordirtbeso-called
stick voting tensor field defined as followslédioni et al, 2000):

Lidi?

V(X =X, a(T(X))) = e_(“—g)lﬁ NT (10)

12
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wheres = s(x - X') = 22 _js the length of the arc that connects the voter and the

sing

receiverx = k(x — X') = 23 the curvature of the osculating circéa constant

that controls the decay with respect to curvature@pi the length scale of anal-
ysis, which determines thdtective neighbourhood siz@xpressed in voxels)
Consequently, the exponential term represents the destd@pendent attenuation
of the saliency. The orientation of the voté, is obtained by dragging the vector
Vi = [cosa (T(X')),sina (T(x))] that determines the orientation of the stick ten-
sor at voter poink’, along the arc fronx’ to the receiver point (Figure2(A)):

N = R(2¢)Vy, with R() denoting the rotation matrix.

Figure 2(B) depicts the stick voting tensor field, which is the cadliex of
the second order votes cast by a voter located at the oridins&vstick tensor
has unit saliency and orientation along the x-axi¢x, 0). The extension of this
voting kernel is limited byr, (in practice it is about & o) and¢ < 45° (Medioni
et al, 200Q Tong et al, 2004).

The voting mechanism expressed in Ef0)(is usually interpreted as fol-
lows (Medioni et al, 200Q Tong et al, 2004. To compute the votes cast by a
voter x’, the stick voting fieldV(x, 0) is placed at the location of the voter and
with its orientationa = a(T(x’)) (Medioni et al, 200Q Tong et al, 2004, using

tensor rotation operations:

V(x - X, @) = R(a) V(R (a)(X - X),0)R}a) (11)

Figure2(C) shows a sketch of this transformation and voting prac&sst im-

plementations of tensor voting are based on this interfioeta

13
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3.1.4. Vote collection and interpretation of results

The votes received at each voxehre collected and accumulated by tensor
addition so as to yield the resulting output tensgx). Thus, the voting process
described above can be considered as a tensor convolutia ioiput tensor field
T(x) with the voting fieldV (X, @):

Ux) = Z S(T(X) V(x = X', a(T(x'))) (12)
X' € Neighk)

wherex’ represents a voter within the neighborhoodxpfwhich has saliency
S(T(x)) and orientatior(T(X)).

After TV, the output tensor fielt)(x) is expected to have more coherent struc-
tural information. Voxels belonging to the same geometeatdire will have
strengthened each other and their tensors will have beeifiatbth enhance the
underlying global structure. Interpretation of the finalders is carried out as de-
scribed above, in Sectidhl.], leading to a more reliable estimatescofves(i.e.
voxels with highcurvesaliencyl; — 1,, and with the normal to theurvepointed
by V).

3.2. Hficient implementation of Tensor Voting with steerable flter

Tensor voting is a computationally demanding procedure. standard imple-
mentation consists of pre-computing and storing the vdteid V (x, 0) (Eq. (L0)).
Translation and rotation of the voting field throughout tm&age space needed for
casting votes (Egsl(; 12)) is done by interpolation. Alternatively, storing all ro-
tated voting fields would reduce the voting process to singu&-up operations
and interpolation, but the memory consumption would be é&igihere exists,
however, a more fécient implementation that takes advantage of the theory of

steerable filtersKranken et a).2006. The requirement for selective orientation

14
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of the voting field is similar to that encountered with scalaented filters, the
optimal implementation of which is carried in the framewarkthe theory of
steerable filtersKreeman and Adelspt991).

In image processing, a steerable filter is a filter that canrEni@d in an
arbitrary direction just by a linear combination of a finitenmber of predefined
rotations of the filter (so-called basis functions or filjgfsreeman and Adelson

1991). Rotation of the steerable filtérby an angler can be shown as:

M
h(x, @) = ) kn(@)m(x) (13)
m=1

whereh,(x) are the basis filterd,(«) are the linear cd@cients that depend on

the rotation angler, m denotes the index of the basis filters and the number of

basis filters isM. In practice, in order to reduce the number of the basis dilter
required to steer the filter, they are taken from the nonzeeficients of the an-
gular Fourier decomposition of the filtedffeeman and Adelsot991). Filtering

an imagef (x) with the oriented filteh(x, @) then becomes:

M
F00) + h(x, @) = D Kn(@)(F () % hn(x)) (14)
m=1

wherex denotes convolution. In other words, an image filtered atraitrary
direction can be computed by a simple linear combinatiorhefitnage filtered
with M basis filtershy,, with codficientsky(a). If M is suficiently small, this
turns out to be a veryficient method for arbitrary oriented filtering of images.
Here we briefly describe the two key aspects of the derivatiosteerable
approach to 2D TV in order to understand the internals of mplémentation.

This derivation, together with the mathematical detailgravnicely presented

in (Franken et a).2006). First, steerable tensor voting uses a saliency decay func

tion different from the original one (exponential term in EfQ)j so as to make

15
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the voting field bandlimited (i.e. to have a finite number ohmero coéicients
of the angular Fourier decompositior&:e;‘f% cos ¢.

Second, as explained in Secti8ri.], the tensors used in 2D TV arex22
symmetric matrices having three independent componétist,y, t,,}. Tensor
rotation (Eqg. (1)) can be computed using a similarity transformati@olub and
van Loan 1996, as thoroughly described ifrfanken et aJ.2006 for a general
case. Furthermore, rotation of a pure stick tensor, as medjuiere for votes,
simplifies to the rotation of a single functidh, derived from the components of
the tensorfranken et a).2009: V_; = t, + 2ity, — ty,. This function allows easy
calculation of the saliency and orientation of the tens®defined in Egs.?) and
(8): S(V) = IV_o| ande(V) = 3 arg (V_,), respectively.

Thus, the steerable tensor field rotated by an aaggefinally reduced to the
rotation of the steerable functidn, (Franken et a).2006:

4
Voa(%,@) = D Kn(@)Vin(x) (15)
m=0
wherek,, are the linear cdécients:
km(a,) — e—2i(m—1)a (16)

andVy(x) are the basis filters given by:

iy? ( X+ iy

Vin(X) = yme 7 | ———=
VX2 +y?

whereyn, has constant valuegl, 4, 6,4, 1} form= 0...4, respectively.

2m
] , for x =(x,y) # (0,0) a7)

Therefore, the voting process originally expressed as soteoconvolution

(Eq. (12) is reduced to a scalar steerable convolution that, sitpita Eq. (14),

16
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can be expressed as:

4
U_2(X) = S(T(x)) * V_a(X, (T (x))) = Z k(@ (T GON(S(T(X)) * V(X)) (18)
m=0
From here, calculation of the output saliency and orieotais straightfor-

ward, as mentioned above:

S(UR)) = IU_2(x)|
o(U(x) = 3 arg U_z(x))-

Egs. (L8) and (L9) reveal that only five convolutions are required to accosipli

(19)

TV. Moreover, computation of these convolutions in Fouspeeds up the cal-
culation significantly Franken et a).200§. Therefore, this steerable approach
provides a very ficient implementation of TV, well suited to deal with large to
mograms commonly encountered in ET.

The implementation of steerable 2D TV can then be summaasédllows:

e Initialization of the input tensor field .
The saliency and orientation of the input tensor field, (k) and @i,(x))
are initialized based on the eigenvalugg &nd eigenvectorsy() of the2D

Hessian or Structure tensorthe input 2D slic{see Egs.q) and @)):

Sin(X) = S(T(X)) = |41 — A2 (20)
ain(X) = (T (x)) = arccos ¥ - &) (21)
e Tensor voting.
17
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The output salienc$,.(x) is computed according to the following expres-
sion derived from Eqs1@) and (L9):

4
Souf(®) = SUK)) = | > Knl@in())(Sin(X) * Vin(x)) (22)
m=0

with ky(ain(X)) andVy(X) given by Eqgs. 16) and (L7), respectively, and the

convolutions being computed in Fourier space.

As mentioned above, our approach to apply TV on a tomograoives appli-
cation of this éicient 2D computational procedure to 2D slices of the tomwmgra
along the three major axes. The final output surface saliGrcgach voxel is
taken as the average of the three curve saliency valuesblaillo reduce the
distortion caused by the missing wedge, the input salieadyes of the voxels
with orientation|a(T (X))| > w are set to zero, with being the maximum tilt an-
gle used in the tilt-series acquisition. This constrairdapplied for voxels in xz-
and yz-planes.

Figure 3 shows the ability of TV to detect membranes correctly evethe
presence of membrane-attached structures and to fill the ggsent in mem-
branes when applied to a cellular cryo-tomogram. Suppléangirigure S1 also
illustrates that the output saliency proves to be well suite automated mem-

brane detection.

18
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4. Tensor Voting-based membrane detection

In this section we present the whole procedure devised trtetembranes.
It relies on an improved local detector of membranes (orgsléee structures in
general) based on TV. The use of TV provides robustness $athibe end of
the process membranes are extracted by a simple threshpagaration. This

procedure is named TomoSegMemTV and consists of the faollpatages:

1. Filtering and scale-space of the input tomogram.

This stage aims to reduce noise and filter out structuratnmédion smaller
than the scale of interest. It also helps to ensure that edges and ridges
approach Gaussian profiles, which is important for Stage 3ually a
Gaussian low-pass filtering is used, but more aggressiv&e maiduction
techniques, such as the anisotropic nonlinefiuslion filter Frangakis and
Heger| 2001, Fernandez and |.2003 2005 might be used before scale-
space so as to substantially remove noise, flatten backdranh preserve
and enhance features of interest. However, to our experj¢hne actual ef-
fect that this filtering has on the performance of the segatemt algorithm

is not significant.

. Tensor voting on surface saliency.

TV is applied to enhance the local surface information mediby the Hes-
sian or the Structure tensor of the scale-spaced tomogffatime &im is to
detect ridges, the Hessian tensor is used as an input to €dgés are to be
detected, the Structure tensor is used. Note that in thex ledise the output
surface information will refer to the middle of the edges huwould be
otherwise equivalent to the information obtained by theaf¢he Hessian

tensor, as explained in Secti@2. Hence, the remaining stages proceed in

19
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the same way, regardless of the input tensor used. The pefme of TV

applied to a cryo-tomogram of a synapse is illustrated iufed.

. Local surface detection and characterization.

The NMS detector defined in E@)(is employed to detect membrane struc-
tures from the surface saliency obtained by the previougestahis results

in a 1-voxel-thick surface, which represents the centesliof the potential
membranesFigure5(E)). Next, the extracted points are subjected to char-
acterization through planarity descriptors, which detaerhe probability

of belonging to a surface. As it was done for vessel deteatiRI (Frangi

et al, 1998 and cell membranes in optical microscopjydsaliganti et al.

2012, 3D planarity map is defined by the following mathematiogires-

sion:
Ps(X) - Pp(X), ¥xe &8
o = | P00 Pl 23)
0, otherwise
with
Py(x) = 1 — et/ Pp(X) = 1 — e P0/P, (24)

wherex are voxel coordinates§ is a binary mask resulting from the NMS
operation, and is the arithmetic mean of the samples in tBedomain.
p is the descriptor that measures planarity of a structurerdowy to the
eigenvalues of the Hessian tensor of the scale-spaced golum

h
REN

Ps enhances points that stand out from the background, whé&gtwse

(25)

exhibiting locally planar structure. These definitionsweesthat the pla-
narity map takes values in the rangeIPand that the contribution of fac-

tors Ps and P, to P are equally important. The weight of the factots
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andp(x) is automatically controlled through their meansSinThe example

presented in Figurd shows that these descriptors complement each other.

. Tensor voting for bridging gaps.

Itis possible to observe in FiguBethat the descriptdP gives an output that

is similar to the expected segmentation. However, dirgetstiolding ofP

may still produce holes in those membrane regions with Id®vealues. In
order to makd® more uniform and fill potential gaps, TV is applied on the
Hessian tensor d?, using the same parameter configuration as in Stage 2.
Prior to TV, P is subjected to Gaussian filtering & 0.5) to make it slightly

denser (note tha is sparse as it results from a NMS operation).

. Local membrane detector.

The map resulting from the previous stage could already bd as a local
detector of membranes. However, we find it useful to proceil the
eigen-analysis of the Hessian tensor of that map to extiacthsolute value

of the largest eigenvalugl(|, with 1; < 0; 0 otherwise), followed by NMS.
The resulting map (Figuré(Left)) is more robust tha® (Figure5(D)) in

the sense that thefiierence between the membranes and the other points
is higher. This is becaugg,| is more sensitive to the density and can thus
detect true membrane points. In addition, the eigen-aisapesformed at

this stage provides the information about the directiopeedicular to the

membrane\f;) at all membrane points.

. Thresholding and global analysis.

This post-processing stage aims to analyze and integtatieglabal scale,
the local structural information derived in the previousggs. First, spuri-

ous structures have to be rejected. The robustness of théraerendetector
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of the previous stage enables this rejection by a simplalatarthreshold-
ing procedure (Figuré(Center)). Second, a global analysis, based for in-
stance on volumetric size, helps to discern whether the setgd structures
are actual membranes and also to distinguish betwe@ereht types of
membranes, as described previoudha(tinez-Sanchez et ak011) (Fig-

ure 6(Right)). More sophisticated global analysis could be ysedh as
that based on clustering of the local membrane density pr@ibng the di-

rection perpendicular to the membrang (Martinez-Sanchez et ak013.

The output of TomoSegMemTYV consists of 1-voxel thick suetacrhe mem-
brane thickness can be easily increased by means of morpbaloperations.

The whole procedure works in 3D except Stages 2 and 4, whechased on
the application of TV to 2D slices, as described earlierg&€¢e3 and 5, however,
are based on the 3D Hessian tensor (see Se2}icalculated for all voxels of the
corresponding input map.

The tuning of the parameters required by the algorithm iatikedly simple.
The key parameter for TV is,, which is related to the SNBontrast. The poorer
SNR/contrast conditions are, the highey should be.As this parameter defines
the neighbourhood in TV, higher values tend to emphasigetanembranes over
smaller ones (for instance, compare synaptic membranesstoles in Figure).

In our experiments, values in the range from 5 to 15 voxelsewaken The
threshold, on the response of the membrane detector is required atshstdae
to produce the output binary map. It can be easily set by teehesed on visual
inspection (see Figur6). At this point, a threshold on the volumetric sige
of the segmented structures may be required to extract thetéal membranes.

The scaler for scale-space operation should be tuned according to ¢énebrane
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thickness in the tomograms. The parameias given by the maximum tilt angle
used in the tilt-series acquisition. With regard to the pagterss andty, of the
NMS detector (Eq.J)), in this work they were fixed to 0.71 and 0.03, respectively

5. Results

5.1. Validation of the method

A quantitative analysis based on a synthetic phantom toamgmder dier-
ent noise conditions was performed to validate TomoSegMérhfie evaluation
includes a comparison with a standard technique, templatetimg.

Template matching underlies recent approaches for aueahssgmentation
of specific structuresHernandez2012), including membraned_gbbink et al,
2007, 2010. In these works, a template suitable for membranes (tilpiea
cuboid shape) is rotated, adjusted to account for the diistocaused by the miss-
ing wedge and cross-correlated with the tomograebpink et al, 2007). The
resulting cross-correlation map, which gathers the re$udin all possible rotated
versions of the template, is then thresholded to obtain tta egmentation.

The phantom (ground truth) that we have designed for thigla@abn in-
cludes a number of geometric features resembling memhbraesisles and tubu-
lar structures (see Supplementary Figures S3 and S4). Tdaemacromolec-
ular crowding, theSaccharomyces cerevisi80S ribosome structure, taken from
the EM databank (httgemdatabank.org; entry emd-1076), was properly scaled,
randomly oriented and placed throughout the phantom toamgkVe tested dif-
ferent number of ribosomes (1000, 5000 and 10000) affiekdint noise conditions
(SNR=0.05, 0.1 and 2). For template matching, we used the Molmatplemen-
tation (Forster et al.2010 with a template consisting of a plane with the thickness

of the membranes in the phantom. For TomoSegMenmT ®nd o, were set to
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1 and 10, respectively. In order to ensure a fair comparisswéden template
matching and TomoSegMemTYV, the same strategy was usededhtésholding
and global analysis (see Supplementary Material, Sectioi 5

The metrics used for the quantitative analysis are theviatlg. First, the frac-
tion of true positives (TPF; also known as sensitivity) is traction of membrane
points that have been correctly classified. Second, thédraof true negatives
(TNF; also known as specificity) is the fraction of non-meant® points that have
been correctly left out of the membranes. Third, the preni$§PR) gives the pro-
portion of overlappingoncordance between the phantom and the segmentation
(see (Garduno et a).2008 Martinez-Sanchez et akR011, 2013 for more infor-
mation about these metrics). Hy andH are the binary representations of the
ground truth (i.e. the phantom) and the segmentation ressiiectively, these

: ; ) IHNHg| _ IHSnHg| _ [HNHgl ;
metrics are defined as: TRF A TNF = —=2%, and PR= , where| - | is
g [Hgl [HUHg|

the number of elements in a setandn represent the union and intersection set

operations, respectively, a¥ denotes the complement of et

Tables1 and2 summarize the results obtained from the evaluation. As ex-
pected, the performance of both techniques deterioratésdecreasing SNR and
increasing macromolecular crowding. In particular, theelafactor severely de-
grades the performance of template matching. These reshidtg that TomoSeg-
MemTV is much more robust to noise and crowding and outper$otemplate
matching, having sensitivity (TPF) around 90%. It is renadlke that TomoSeg-
MemTV under the worst conditions (SNR.05 and 10000 ribosomes) presents
behaviour similar to template matching in the best scertagted here (SNR2
and 1000 ribosomes). Supplementary Figures S3 and S4 shampdes of the

performance of the methods on the phantom.
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Similar behaviour is observed when applied to experimamjal-tomograms,
as presented in Supplementary Section S.5.1 and Figurehebe, Tan example of
cryo-tomogram of neuronal synapse shows the limitatiortemiplate matching.
No optimal threshold is found, leading to false positived aegatives. On the
contrary, the thresholding in TomoSegMemTYV is straighfand and membranes

turn out to be well delineated.

5.2. Applications to experimental datasets

In this section, illustrative examples of the applicatidfomoSegMemTV to

several experimental datasets are shown.

5.2.1. Human Immunodeficiency virus

The segmentation method presented here was applied to dangagram of
HIV-1 virions that was taken from the EM databank (hWgmdatabank.org; entry
emd-1155) Briggs et al, 200§. This tomogram has been often used in the field
to test denoising and segmentation algorithms (exgn @er Heide et 312007,
Fernandez2009). The tomogram was first subjected to the membrane detec-
tion algorithm that we developed previously, TomoSegMémartinez-Sanchez
et al, 201J). In general, it allowed good delineation of the outer mesmiess of
the virions, as shown in Figuré However, the limitations of the technique are
evidenced by some imperfections, such as gaps in the megg(green arrow-
heads) or residual structures apposed to them (yellow aeauds) that arise from
the dense material in the interior of the virions.

The use of TomoSegMemTV overcame those limitations. Tewsting and
the planarity characterization make the method more rofdtmore sensitive
to membranes, as shown in Figufe This is reflected in the continuity of the

membranes of the virions, which are free of gaps and spugmisusions.
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5.2.2. Caulobacter Crescentus

As an example of detection of a membrane with edge-like grofie took a
tomogram ofCaulobacter Crescentua gram-negative bacterium, from the Cell-
Centered database (htfocdb.ucsd.edu; entry 3647). We focused on the detection
of the outer interface of the bacterial wall. To do so, wedaid the TomoSeg-
MemTYV algorithm but, as already described, we used the ireitensor at Stage
2 of the algorithm instead of the Hessian tensor (see Segjioimhe remaining
stages of the algorithm proceeded in the same way as if theidietensor was
used. FigureB shows that TomoSegMemTV succeeded in detecting the outer
membrane.

The availability of information about the normal to the mearke for all seg-
mented points opened up the possibility of further analysis this particular
case, we extracted density profiles in the direction perjgeiat to the membrane
to obtain an average density profile at a higher resolutiauppmentary Fig-
ure S6 shows the average computed from 31400 orientatyoalained profiles
that were calculated from the tomogram @&ulobacter Crescentusising To-
moSegMemTV. This figure shows peaks corresponding to therimembrane,

the peptidoglycan layer and the outer interface of the battsall.

5.2.3. Neuronal synapses

During the course of this work, TomoSegMemTV has been testecumer-
ous cryo-tomograms of neuronal synapses. Actually, theldpments have been
motivated in part by the particular characteristics of thdatasets (multiple struc-
tures attached to the membranes/andjaps due to the low SNR and contrast,
among other factors), which make automated segmentatpeciedly challeng-

ing. Such datasets were used to illustrate the methodsmnteesbere. Details
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regarding sample preparation and tomogram generationesétbatasets can be
found in Supplementary Material, Section S.5.2.3.

Synapses consist of pre- and postsynaptic terminals aninoa humber
of structural components that have to be segmented fromothegrams. The
plasma membranes of the interacting neurons (referred fwreasynaptic and
post-synaptic membranes) were detected by the procedesemed here (Fig-
ures6 and9). At the synapse, those membranes are directly apposeccio ea
other and are separated by a uniform distance, thus defiheagynaptic cleft.
Output normals provided by TomoSegMemTV allowed the deiteation of the
shortest distance between two membranes at every pointap8gmrmembranes
were detected based on their high volumetric size. Theitigs that delineate
the synaptic cleft were labelled based on the distinctiterimembrane distance
(Figure9). The presynaptic terminal contains machinery for the oeansmit-
ter release and comprises vesicles, as well as short filantlesitt interconnects
the vesicles and tether them to the synaptic membrane. Tire @nesynaptic
cytoplasm was segmented using morphological dilationadfmers, starting from
a point selected by the user and using the segmented memkaarmundaries
(Figure9). Because synaptic vesicles are spherical and have ungaen they
were detected by standard template matching procedureskiog into account
the distortion induced by the missing wed@®btim et al, 2000. Figure10shows

3D views of the segmentations of some datasets.
6. Discussion and Conclusion

Segmentation of electron tomograms recorded from bio&giamples is im-

portant for the interpretation and visualization of theéfustural components and
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is necessary for their further computational analysis.eHee present TomoSeg-
MemTYV, a procedure for membrane segmentation based on M&bsag. It
relies on an improved local membrane detector that propagtterential infor-
mation within the neighbourhood of each voxel in an anigmtrevay, according
to the underlying global structure. This strategy provittesalgorithm with the
ability to fill gaps present along the membranes. Moreovegmfers robustness
against other structures attached to membranes and agfaénkiw SNR typi-
cally found in cryo-tomograms. The algorithm has been zéd and tested on
a number of experimental datasets, with special focus osdgmentation of the
structures required for the analysis of neuronal synapses.

TomoSegMemTV can detect structures with either ridge oequigfiles, by
simply choosing the Hessian tensor or the Structure Tenssedlocal detec-
tor, respectively. Moreover, the algorithm yields not ottle set of segmented
membrane points, but also the normals to the membraiéss enables more
sophisticated structural analyses, such as characterizahd classification of
membranes according to their local propertidaftinez-Sanchez et alk013.
TomoSegMemTV can also be used for determination of averagabrane pro-
files, enabling automated tomographic data analysis. &usvapproaches only
allowed limited averaging, used semi-automated procedoreequired sophis-
ticated techniquesL( et al., 2007 Hoffmann et al. 2008 Zuber et al. 2008
Tocheva et a).2011).

The output yielded by the local detector of TomoSegMemT¥iédrout to be
very robust, which enabled the use of a simple thresholdingqulure to select
the putative true membrane points. Therefore, this caiteitan advantage over

other methods used in the field including our previous detdbtartinez-Sanchez
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et al, 2011), where a more complex hysteresis thresholding stage vaasreel.
Moreover, template matching is a prominent technique thppsrts segmenta-
tion approaches targeting filamentous or membranous stasc{_ebbink et al,
2007 Rigort et al, 2012. However, template matching tends to produce spuri-
ous correlation peaks in overcrowded environments, paatity under low SNR
as is the case in electron cryo-tomography, which limitsgaédormance of the
thresholding operation over the cross-correlation mapa 8snsequence, an op-
timum threshold cannot be found and the thresholded map oftetains residual
false positives or gaps in the targeted structures (falgatnes). By contrast,
the robustness of TomoSegMemTV makes it less susceptiliéstproblem. An
additional advantage over template matching is that mathaded on dierential
geometry are more flexible to adapt to high membrane cudtebbink et al,
2007).

A quantitative evaluation of phantom datasets has beeonpeedd using stan-
dard quality metrics for the task of membrane detection unetdistic noise and
crowding conditions. This analysis has confirmed that tlypréhm performs
well under diferent noise levels, including very low SNR, and in the presen
of a large macromolecular population. Moreover, this agsesit has shown that
TomoSegMemTYV clearly outperforms template matching. €halsjective re-
sults have also been reflected on the application to expetahdatasets, where
TomoSegMemTYV exhibited very good behaviour undéiiedent conditions.

An important benefit from the user’s point of view concernsapaeter setting.
Compared to our previous methdddrtinez-Sanchez et ak011), the number of
key parameters is reduced. Some of them are fixed by the exgatal imaging

conditions, while the tuning of others is straightforwarBssentially, only the
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following parameters need to be tuned: the scale of Tensting/or,, which
depends on the SNRnd the membrane sizthe threshold applied to the local
membrane detector and the volume threshold used in thelgobdysis stage,
which is determined by the size of membranes.

The implementation of TomoSegMemTYV follows a steerableaaggh to ten-
sor voting, which makes it particularlyffecient to deal with the large datasets
commonly found in electron tomography. In addition, we happlied multi-
threading techniques to further accelerate the progfaamandez2009. As a
result, tomograms of typical size are segmented in a matterimutes on stan-
dard multicore computers. This is an advantage over tempfatching, which
requires significant processing timaghm et al, 200Q Lebbink et al, 2007). A
software package implementing TomoSegMemTV has beenajs@lfor public
use and it is available upon requeBhe software has been developed in Mdtlab
though computational demanding routines were codedHn i@ order to increase
the execution speed. A complementary package, SynapSegWoth Graphical
User Interface for intuitive and friendly segmentationyfigpsis is also available.

The segmentation procedure presented here may faciliiéseguent higher
resolution structural studies. For example, the precisenionane localization
and orientation can provide alignment for subtomogramayiag of membrane-
associated complexes (e.@f¢ffer et al, 2012 Zanetti et al. 2013). Moreover,
our future interests also include further development ef tdnsor voting algo-
rithm to detect other structures, such as curvilinear carepts or macromolecu-

lar complexes.
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Figure Legends

Figure 1. Response of detectors based on Hessian tensor and Strtertaoe.

(Left) A ridge profile is shown in blue and the absolute val@ithe largest eigen-
value of the Hessian Tensor, i.e. second order derivatieegbsitive values have
been set to zero as in EQ)J in red. The dashed line marks the ridge point where
the major eigenvalue reaches its local maximum. (Right) Action showing an
edge profile in blue and the largest eigenvalue of the Streciansor, i.e. first
order derivative, in red. The dashed line marks the edget pdiere the major
eigenvalue reaches its local maximum. The values of theneadees have been

normalized to fit the range of the function.

Figure 2. Tensor Voting in 2D. (A) Model for vote casting based on aksténsor.
The voter a’ is shown with its normal in green. The voxels the receiver. The
dashed arc represents the arc of a circle passing thedwagtax, which is the most
likely smooth path between these points. The orientatidh®ote cast fronx’
to x is shown in red. (B) 2D stick voting field calculated toy = 10. The center
of the field is placed at the origin, and the normal orient@mhg@lthe x-axis. The
8-shape encompasses the votes with most significant sali@@rTensor voting
mechanism. Votes cast from three voters (orientation veatogreen) belonging
to a curve (black) are shown. The votes are cast to all vorelsa neighbour-
hood, while the contributions to some receivers belonginthé same curve are
shown as red dotted arrows. At the end of the voting processly belonging
to the curve (a geometric feature) will have been strengttichence enhancing

the feature. The other voxels will have received divergefarimation, which will
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smear them out.

Figure 3. Performance of tensor voting with cryo-ET data. (Left) aeslof a

cryo-tomogram of a synaptic active zone. The green arrowtpdd a membrane
gap. The yellow arrows point to structures anchored to thenlbnanes. (Right)
Output of our TV implementation where membranes are enlikribe gaps are
filled and the membrane-attached structures are disredjahaléhis example, the

parameters were set o= 2 ando, = 10.

Figure 4. Tensor voting applied to an experimental cryo-tomogram sfreapse.
(Left) a slice of the original tomogram. (Right) Output ofr@lV implementation,
with o, setto 7. Prior to TV, the tomogram was subjected to scaleespperation

with o=3. Pixel size at the specimen level1.87 nm. Bar= 100 nm.

Figure 5. Local surface characterization. (A) Colormap used for dpswrs
shown in panels B-E. Blue color corresponds to the minimulnevand red to
the maximum. (B-D) Planarity descriptors presented in &&gf the TomoSeg-
MemTV procedure. (BPs of the slice in Figurel(Left). (C) P,. (D) P. (E) This
panel is obtained by the application of the NMS detector (B)Y.to the output of
TV (Figure 4(Right)) and it is used as the input for the computation ohpléy
descriptors (panels B-D). When compared to (D), the higbleustness of the de-

scriptor P throughout the major membranes becomes apparent

Figure 6. Final stages of membrane detection with TomoSegMemT Vi)ICadit-

put from the local membrane detector in TomoSegMemTV (SEghlotice that
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this output is more robust thal shown in Figure5(D). (Center) Result after
thresholding (Stage 6). (Right) Result of the global analymsed on volume
(Stage 6): the color encodes the volume measured for evanbna@e according

with the colormap in Figurg(A).

Figure 7. TomoSegMemTYV applied to a cryo-tomogram of HIV-1 virion&) (
Slice of the original tomogram. (B) Scale-space with= 2. (C) Output of the
local membrane detector of TomoSegMem (also known as Mamlstength,
presented here in EQR)). (D) Final segmentation of TomoSegMem through hys-
teresis thresholding and global analysis based on 8izetinez-Sanchez et al.
2011). The three virions are shown withftgrent grey values that encode the size
of every segmented membrane. Green arrowheads point tagdpyllow arrow-
heads point to spurious segmented structures apposed tbnamees. (E) Output
of the local membrane detector of TomoSegMemTV (Stage 5 ati@e4). (F)
Final segmentation of TomoSegMemT¥,(= 10) through simple thresholding
and size-based global analysis. The gaps and the structppesed have disap-
peared. Grey values represent the size of the segmentedranembixel size at

the specimen levet 1.64 nm. Bar= 100 nm.

Figure 8. TomoSegMemTV applied to a tomogram @&ulobacter Crescentus
From left to right, the panels show a slice of the original tgram, the delineated
membrane and a 3D view of the segmented structye=(10 ando- = 3). Pixel

size at the specimen level2.84 nm. Bar= 400 nm.
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Figure 9. Segmentation by TomoSegMemTYV of thre&elient cryo-tomograms
of neuronal synapses. We used € [5,10] ando € [1.5,2]. These datasets
were denoised by anisotropic nonlineaifaion prior to the segmentation. (A,B)
Tomogram 1, shown already on Figuse (A) Detection of the pre- and post-
synaptic membranes (green) and thembrane regions that delineate the synaptic
cleft (red) Note the little &ect provided by the prior use of anisotropic nonlinear
diffusion when compared to Figurésand 6. (B) Pre-synaptic cytoplasm (blue)
was segmented using dilation operations from a point ssdeloy the user (see
panel A) and with the segmented membranes acting as boesd&wrt of the
cytoplasm that lies within a specified distance to the synapeft is highlighted
in cyan. The vesicles (yellow) were detected by templatemag) using spheres
distorted by the missing wedge as references. (C-F) TomogrgC) Slice of the
tomogram. The arrow points to an area zoomed in (E,F). (Dirfeedgation. The
same colors as in (A,B) are used to denote the segmented raeestand regions.
In violet, a mitochondrion is extracted with TomoSegMemTanfigured for de-
tecting edge-like structures. (E) Membranes in tomograftengresent holes or
appear blurred. Tensor Voting succeeded in bridging theaps ¢). (G,H) To-
mogram 3. Segmented structures use the same color code\as dlie panels
also show the graphical user interface developed in thikwBixel size at the

specimen levek 1.87 nm.
Figure 10. 3D visualization of several segmented cryo-tomograms oforal

synapses. Segmented membranes are shown intbtubpundaries of the synap-

tic cleft in red andvesicles in yellow.
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Figures
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Figure 1. Response of detectors based on Hessian tensontamdu& tensor. (Left) A ridge
profile is shown in blue and the absolute value of the largiggin@alue of the Hessian Tensor,
i.e. second order derivative (the positive values have lseeito zero as in Eq.2J) in red. The
dashed line marks the ridge point where the major eigenvahghes its local maximum. (Right)
A function showing an edge profile in blue and the largestraigkie of the Structure Tensor, i.e.
first order derivative, in red. The dashed line marks the quget where the major eigenvalue
reaches its local maximum. The values of the eigenvalues hesn normalized to fit the range of
the function.
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Figure 2: Tensor Voting in 2D. (A) Model for vote casting bdsm a stick tensor. The voter st

is shown with its normal in green. The voxelis the receiver. The dashed arc represents the arc of
a circle passing througki andx, which is the most likely smooth path between these poirtte. T
orientation of the vote cast froxf to x is shown in red. (B) 2D stick voting field calculated for
oy = 10. The center of the field is placed at the origin, and the mboriented along the x-axis.
The 8-shape encompasses the votes with most significaahegli(C) Tensor voting mechanism.
Votes cast from three voters (orientation vectors in gréeignging to a curve (black) are shown.
The votes are cast to all voxels in the neighbourhood, whidecontributions to some receivers
belonging to the same curve are shown as red dotted arrowtheAdnd of the voting process,
voxels belonging to the curve (a geometric feature) willlhbeen strengthened, hence enhancing
the feature. The other voxels will have received divergeiarimation, which will smear them out.
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Figure 3: Performance of tensor voting with cryo-ET dataef{lLa slice of a cryo-tomogram of
a synaptic active zone. The green arrow points to a membrame The yellow arrows point to
structures anchored to the membranes. (Right) Output offduimplementation where mem-
branes are enhanced, the gaps are filled and the membranbeatistructures are disregarded. In
this example, the parameters were sette 2 ando, = 10.
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Figure 4: Tensor voting applied to an experimental cryoggram of a synapse. (Left) a slice of
the original tomogram. (Right) Output of our TV implemeitat with o, set to 7. Priorto TV,
the tomogram was subjected to scale-space operatiorowigh Pixel size at the specimen level
=1.87 nm. Bar= 100 nm.
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Figure 5: Local surface characterization. (A) Colormapifse descriptors shown in panels B-E.
Blue color corresponds to the minimum value and red to themmamx. (B-D) Planarity descriptors
presented in Stage 3 of the TomoSegMemTV procedureP{Bf the slice in Figurel(Left). (C)
Pp. (D) P. (E) This panel is obtained by the application of the NMS dete(@ar (3)) to the output
of TV (Figure 4(Right)) and it is used as the input for the computation ofhplity descriptors
(panels B-D). When compared to (D), the higher robustneshefiescriptor P throughout the
major membranes becomes apparent.
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Figure 6: Final stages of membrane detection with TomoSegMé (Left) Output from the local
membrane detector in TomoSegMemTV (Stage 5). Notice thabihtput is more robust tha
shown in Figures(D). (Center) Result after thresholding (Stage 6). (Ridtesult of the global
analysis based on volume (Stage 6): the color encodes theneaineasured for every membrane
according with the colormap in FiguBgA).
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Figure 7: TomoSegMemTYV applied to a cryo-tomogram of HI\irdons. (A) Slice of the original
tomogram. (B) Scale-space with= 2. (C) Output of the local membrane detector of TomoSeg-
Mem (also known as Membrane strength, presented here iRBq([D) Final segmentation of To-
moSegMem through hysteresis thresholding and global sisahased on sizéartinez-Sanchez

et al, 2011). The three virions are shown withftBrent grey values that encode the size of every
segmented membrane. Green arrowheads point to gaps aad yetbwheads point to spurious
segmented structures apposed to membranes. (E) Output fdhl membrane detector of To-
moSegMemTV (Stage 5 in Sectial). (F) Final segmentation of TomoSegMemT¥, (= 10)
through simple thresholding and size-based global aralyidie gaps and the structures apposed
have disappeared. Grey values represent the size of theeségsirmembraneRixel size at the
specimen levet 1.64 nm. Ba= 100 nm.

48



O©CO~NOOOTA~AWNPE

Figure 8: TomoSegMemTV applied to a tomogranCafulobacter Crescentugrom left to right,
the panels show a slice of the original tomogram, the dei@teaembrane and a 3D view of the
segmented structure{ = 10 ando = 3). Pixel size at the specimen level2.84 nm. Bar= 400
nm.
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Figure 9: Segmentation by TomoSegMemTV of threffedéent cryo-tomograms of neuronal
synapses. We used, € [5,10] ando € [1.5,2]. These datasets were denoised by anisotropic
nonlinear dffusion prior to the segmentation. (A,B) Tomogram 1, showeaaly on Figuré. (A)
Detection of the pre- and post-synaptic membranes (greehjreemembrane regions that delin-
eate the synaptic cleft (red)lote the little éfect provided by the prior use of anisotropic nonlinear
diffusion when compared to Figurdsand 6. (B) Pre-synaptic cytoplasm (blue) was segmented
using dilation operations from a point selected by the usee panel A) and with the segmented
membranes acting as boundariBsrt of the cytoplasm that lies within a specified distandi¢o
synaptic cleftis highlighted in cyan. The vesicles (yellow) were detedigdemplate matching
using spheres distorted by the missing wedge as refere(i¢cds) Tomogram 2. (C) Slice of the
tomogram. The arrow points to an area zoomed in (E,F). (D)reagation. The same colors as
in (A,B) are used to denote the segmented membranes andhsedioviolet, a mitochondrion is
extracted with TomoSegMemTV configured for detecting elilgestructures. (E) Membranes in
tomograms often present holes or appear blurred. Tensorgveticceeded in bridging these gaps
(F). (G,H) Tomogram 3. Segmented structures use the sarmeamile as above. The panels also
show the graphical user interface developed in this wélkel size at the specimen level1.87
nm.
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Figure 10: 3D visualization of several segmented cryo-tgrams of neuronal synapses. Seg-
mented membranes are shown in blies boundaries of the synaptic cleft in red aresicles in
yellow.
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Tables
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Table 1: Quantitative analysis based on synthetic phantom for Tomo&MemTV.
1000 Ribosomes 5000 Ribosomes 10000 Ribosomes
SNR PR TPF TNF PR TPF TNF PR TPF TNF

0.05 0.8434 0.9167 0.9947 0.8266 0.9096 0.9941 0.7193 ©.830.9906
0.1 0.8474 09231 0.9946 0.8332 0.9116 0.9938 0.8004 0.8909925
2 0.8487 0.9274 0.9939 0.8487 0.9274 0.9939 0.8373 0.917893D.
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Table 2: Quantitative analysis based on synthetic phantom for Temlte Matching.
1000 Ribosomes 5000 Ribosomes 10000 Ribosomes
SNR PR TPF TNF PR TPF TNF PR TPF TNF

0.05 0.7538 0.8524 0.9921 0.6440 0.7639 0.9878 0.3953 B.478.9867
0.1 0.7640 0.8769 0.9903 0.6859 0.8209 0.9871 0.4671 0.5300911
2 0.7766 0.8655 0.9932 0.6920 0.8158 0.9882 0.5460 0.63249896.
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