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Abstract

Electron tomography enables three-dimensional (3D) visualization

and analysis of the subcellular architecture at a resolution of a few

nanometres. Segmentation of structural components present in 3D

images (tomograms) is often necessary for their interpretation. How-

ever, it is severely hampered by a number of factors that are inherent

to electron tomography (e.g. noise, low contrast, distortion). Thus,

there is a need for new and improved computational methods tofa-

cilitate this challenging task. In this work, we present a new method

for membrane segmentation that is based on anisotropic propagation

of the local structural information using the Tensor Votingalgorithm.

The local structure at each voxel is then refined according tothe in-

formation received from other voxels. Because voxels belonging to

the same membrane have coherent structural information, the under-

lying global structure is strengthened. In this way, local information

is easily integrated at a global scale to yield segmented structures.

This method performs well under low signal-to-noise ratio typically

found in tomograms of vitrified samples under cryo-tomography con-

ditions and can bridge gaps present on membranes. The performance

of the method is demonstrated by applications to tomograms of differ-

ent biological samples and by quantitative comparison withstandard

template matching procedure.
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1. Introduction

Electron tomography (ET) enables three-dimensional (3D) visualization and

analysis of the subcellular architecture and macromolecular organization of cells

and tissues in situ at a resolution of a few nanometers (Lucic et al., 2013). This

technique involves the acquisition of electron microscopyprojection images of a

specimen at different orientations. These images are then combined by meansof

tomographic reconstruction methods to yield the 3D volume (Fernandez, 2012).

Segmentation of the 3D volume into its constitutive structural elements is key

for their interpretation. However, it proves to be challenging because of a number

of factors such as the crowded cellular environment, the distortion caused by the

missing wedge and noise, which is particularly high in ET of fully hydrated and

vitrified samples (cryo-ET) (Volkmann, 2010; Fernandez, 2012). Thus, segmen-

tation constitutes a major bottleneck in ET, especially in those studies intended

to visualize the subcellular architecture under cryo-conditions. Although several

computational segmentation methods have been presented, none has shown gen-

eral applicability yet. As a consequence, manual segmentation is still a method of

choice.

Software packages often used in ET have been gradually including segmen-

tation procedures based on the most known computational techniques (Water-

shed transform and thresholding (Volkmann, 2002; Cyrklaff et al., 2005)). This

makes segmentation a semi-automatic process, thus facilitating its use. In the

last several years, there have been significant advances towards computational de-

tection of specific structural features within tomograms, like membranous struc-

tures, filaments and microtubules (Lebbink et al., 2007; Sandberg and Brega,

2007; Moussavi et al., 2010; Nurgaliev et al., 2010; Rigort et al., 2012; Weber

4
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et al., 2012). Many of these methods rely on some sort of template matching.

That is, they search for a template that is suited to the targeted feature, typi-

cally by means of cross-correlation techniques. In contrast to these methods, we

have recently developed a differential geometry-based segmentation that is par-

ticularly suited for membranes (Martinez-Sanchez et al., 2011, 2013). We first

proposed a method that uses a local membrane detector based on the Hessian

tensor (Martinez-Sanchez et al., 2011). Later, we improved this detector and ex-

tended the abilities of the framework to characterize and classify the detected

membranous structures (Martinez-Sanchez et al., 2013). Nevertheless, this local

membrane detector still presented several limitations. Namely, gaps that may ap-

pear on membranes due to experimental imaging conditions were not properly

filled. Also, membrane-attached structures were not discarded and were instead

segmented as part of the membranes. A non-trivial postprocessing stage was re-

quired in these cases to actually extract the membrane voxels. Finally, the detector

used was suitable for membranes with ridge-like (i.e. localmaximum) profile, and

was therefore unable to identify edge-like structures (e.g. membrane of vesicles

having dense interior).

In this work, we propose a more robust local membrane detector. The method

is based on broadcasting differential information through the 3D space using the

Tensor Voting algorithm (Tong et al., 2004). In this way, nearby voxels that belong

to the same membranous structure enhance each other’s structural information. As

a result, the new local detector can fill the gaps present on membranes, disregards

structures apposed to the membranes, and it is more robust against low signal-to-

noise ratio, thus simplifying the postprocessing stage. Inthis work we also show

that membranes having ridge-like and edge-like profiles canbe detected using the

5
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same procedure but different tensor that provides the differential information.

2. Background on local membrane detection

2.1. Hessian tensor-based detection

It is assumed that, at a local scale, a membrane can be modelled as a plane-

like structure with membrane density profile (in the direction perpendicular to

the membrane) following a Gaussian function. That is, the membrane profile is

ridge-like, its density decreases as a function of the distance from the center of the

membrane.

Membrane detection starts with the application of a scale-space operation on a

greyscale volume, typically implemented as Gaussian low-pass filtering. This step

is used to isolate the information at a given scaleσ, thus filtering out noise and

all features smaller than the scale. An additional benefit ofthis step is that scale-

space can smooth membranes making their profile closer to Gaussian. Typically,

σ is set to the thickness (expressed in voxels) of the targeted membrane (Martinez-

Sanchez et al., 2011).

Previously, our local detector for ridge-like membranes was based on the Hes-

sian tensor (Martinez-Sanchez et al., 2011). This tensor provides information

about the second order density variation, as it is defined as:

H =



































∂2L
∂x2

∂2L
∂x∂y

∂2L
∂x∂z

∂2L
∂x∂y

∂2L
∂y2

∂2L
∂y∂z

∂2L
∂x∂z

∂2L
∂y∂z

∂2L
∂z2



































(1)

whereL denotes the volume after the scale-space operation and∂2L
∂i∂ j ∀i, j ∈ (x, y, z)

are its second order partial derivatives. As a result of the eigen-analysis of the
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Hessian tensor, three orthogonal eigenvectors~vi and their corresponding eigen-

valuesλi (representing second order derivatives along~vi) are obtained, which

characterize the local structure around any voxel of the volume. If we assume

|λ1| > |λ2| > |λ3|, then the first eigenvector~v1, i.e. the one whose eigenvalue

exhibits the largest absolute value, points to the direction of the maximum curva-

ture. If the local structure is a plane,~v1 points to the direction perpendicular to the

plane and the following relationship holds|λ1| >> |λ2| ≈ |λ3|. This led us earlier

to propose a local detector (so-called membrane strength,M) defined as follows

(Martinez-Sanchez et al., 2011):

M =



















(|λ1|−
√
λ2λ3)2

|∇L|2 λ1 < 0

0 otherwise
(2)

where|∇L| denotes the gradient of the volumeL resulting from the scale-space

operation.

We used two additional steps to detect peaks ofM corresponding to mem-

branes. A thresholdtM overM was imposed to select membrane-like voxels. This

was then coupled with the non-maximum suppression (NMS) criterion which se-

lects only the ridge points (i.e. the local maxima in the direction perpendicular to

the membrane). The use of NMS results in detected membranes being represented

as one-voxel thick surfaces in the 3D space. In summary, the local detector for

ridge-like membranes is given by the following equation (Martinez-Sanchez et al.,

2013), where the first condition represents NMS,δ is a small number andx ∈ R3

denotes a voxel of the volume:



















(

L(x) > L(x − δ~v1)
)

and
(

L(x) > L(x + δ~v1)
)

M(x) ≥ tM

(3)
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2.2. Structure tensor to detect edge-like membranes

The detector defined in the previous section can detect ridge-like membranes,

but it is not suitable for the detection of membranes with edge-like profile where

density on one side of the membrane is similar to that of the membrane (e.g. those

presented by a densely filled vesicle). Consequently, a new detector for this type

of membranes is required. To this end, we focus our attentionto the Structure

tensor (Weickert, 1998), also known as the second moment tensor, which is given

by:

J =
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(
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)2



































(4)

where ∂L
∂i ∀i ∈ (x, y, z) are the first order derivatives of the scale-spaced volume

L. The eigen-analysis of this tensor proceeds as in the previous case (Fernandez

and Li, 2003, 2005). The first eigenvector~v1, i.e. the one whose eigenvalue ex-

hibits the largest value, points to the direction of the maximum variation. Also,

a local plane satisfies|λ1| >> |λ2| ≈ |λ3|. However, the Hessian and Structure

tensors differ regarding the exact position of the detected surface. Fora ridge pro-

file L, the local maximum of the largest eigenvalue (|λ1|) of the Hessian tensor

corresponds to the maximum ofL (Figure1(Left)). For an edge profileL, the

local maximum of the largest eigenvalue (|λ1|) of the Structure tensor corresponds

to the inflection point ofL (Figure1(Right)). Consequently, the Structure tensor

is well suited to detect edge-like local structures. Moreover, the output of this

edge detector is equivalent to the output of the Hessian-based detector (red curves

in Figure1). This means that the eigen-analysis of the Structure tensor allows

detection of edges and their conversion into ridges. This, in turn, enables appli-
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cation of all our ridge-based methodology to detect membranes with edge profile.

Therefore, the ridge-like profiles detected by the Hessian-based detector and the

edge-like profiles detected by the Structure tensor-based detector can be further

processed in the same way.

In this work, first and second order derivatives required forthe components

of the tensors have been implemented based on central differences (Frangakis and

Hegerl, 2001).

3. Tensor Voting

In this section, the theoretical background on Tensor Voting (TV) is presented.

Our aim is to apply TV to enhance surface- or plane-like structures, such as mem-

branes in tomograms. In order to benefit from an efficient implementation of the

TV algorithm in 2D, and because of the high computational demands presented

by TV in 3D we chose to apply TV on tomographic slices. This is supported by

the fact that membranes in tomograms appear as curves in 2D planes (Martinez-

Sanchez et al., 2011). Thus, we proceed by using TV to detect curves on the slices.

In our procedure, TV is applied to all slices along all three major axes. Therefore,

in this section 2D TV algorithm and an efficient implementation of this algorithm

are presented.

3.1. Introduction to Tensor Voting

Tensor Voting is a technique used in computer vision for robust identifica-

tion of salient features, which exhibits excellent performance under particularly

challenging noise conditions (Medioni et al., 2000). In TV, voxels propagate in-

formation about their local structural features across their neighbourhood. The

local properties at each voxel are then refined according to the information re-

9
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ceived from the neighbours. The aim is that voxels that belong to the same global

feature (e.g. a surface or membrane in our case, which are represented as curves in

2D), and thus have coherent structural information, strengthen each other’s con-

tribution to the underlying global structure.

There are several important concepts and steps involved in TV: representa-

tion of the local structural information, the initialization of that information, the

propagation through votes, the gathering of votes and refinement of the local in-

formation. They will be described in the following sections.

3.1.1. Data representation

In TV the local structural information at each voxel is represented by a sym-

metric non-negative definite second order tensor. This tensor allows encoding

saliency of different types of geometric structures(curves and blobs in the 2D

case) by its eigenvalues (λ1 andλ2, with λ1 ≥ λ2 ≥ 0), and the corresponding

eigenvectors (~v1 and~v2):

T =





















txx txy

txy tyy





















=

[

~v1 ~v2

]





















λ1 0

0 λ2





















[

~v1 ~v2

]T

. (5)

Geometric structures can be detected from this tensor as described in the pre-

vious section for the Structure tensor and Hessian tensor (Fernandez and Li, 2003,

2005; Martinez-Sanchez et al., 2011, 2013), but converted to the 2D case. Thus,

voxels belonging to a local curve haveλ1 >> λ2, with ~v1 in the direction per-

pendicular to the curve, and the termλ1 − λ2 represents the curve saliency. At

voxels that do not show a clear structure (blob-like), thetwo eigenvalues have

similar magnitude. The concept of saliency can be understood as the likelihood of

a voxel to belong to one of the basic geometric features.

10
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It is useful to decompose the tensor in order to reveal betterthe different types

of saliency as follows:

T = λ1~v1~vT
1 + λ2~v2~vT

2 = (λ1 − λ2)~v1~vT
1 + λ2(~v1~vT

1 + ~v2~vT
2 ) (6)

In this decomposition, thetwo terms are called stick and ball components,

respectively (Medioni et al., 2000; Tong et al., 2004). In a voxel belonging to a

curve, the stick component dominates because of the high saliencyλ1 − λ2. In the

extreme case:λ1 > 0 andλ2 = 0, so only the stick component remains. Such a

tensor is then referred to as stick tensor, and it encodes a pure local curvewith

saliencyλ1 and the normal vector~v1.

Saliency of the stick component of a 2D tensorT and the direction of the

corresponding vector with respect to the x-axis can be calculated analytically, as

follows (Franken et al., 2006):

S(T) = λ1 − λ2 =
√

tr(T)2 − 4 det (T) =
√

(txx − tyy)2 + 4t2
xy (7)

α(T) = arccos (~v1 · êx) =
1
2

arg (txx − tyy + 2itxy) (8)

Here, tr(T) and det(T) denote the trace and determinant of the matrixT, respec-

tively, · is the dot product,i represents the imaginary unit (i.e.i2 = −1) and arg()

is the phase of a complex number.

3.1.2. Initialization and generation of the input tensor field

Tensors in TV are typically initialized to isotropic balls (i.e. equal eigenval-

ues) or estimated from prior knowledge if available (Medioni et al., 2000; Tong

et al., 2004). In this work, we are interested in detectingcurve-like structures in

11
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the 2D tomographic slices. Thus, for each input 2D slice subjected to TV, Hes-

sian or Structure tensors are calculated and the input tensor field is created as the

pure stick component of the eigen-decomposition of the tensor field. Namely, the

eigenvectors of the input tensor field are~vi ,∀i, while the saliency is|λ1 − λ2| so

that:

T = |λ1 − λ2|~v1~v
T
1 (9)

This defines an input tensor fieldT(x), with x denoting the voxel coordinates, that

represents the preliminary estimated likelihood of each voxel in the input slice

to belong to acurve. Tensor Voting procedure refines the tensor information at

each voxel by propagating the tensors to the neighbourhood,as presented in the

following subsections.

3.1.3. Voting mechanism

Voxels communicate among themselves by propagating information between

each other by a process called voting. The information passed is a second order

tensor called vote, which is sent from a voter voxel to a receiver voxel. In this

work, votes are based solely on stick tensors because they carry information about

curves. A vote is propagated along an arc of a circle that contains voter x′ and

receiverx and is perpendicular to the vector that defines the orientation of the

vote at the voter point (Figure2(A)). The propagation of the vote from voterx′ to

receiverx induces the transformation of the stick tensor according tothe so-called

stick voting tensor field defined as follows (Medioni et al., 2000):

V(x − x′, α(T(x′))) = e
−
(

s2+dκ2

σ2
v

)

~N ~NT (10)

12
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wheres = s(x − x′) = lφ
sinφ is the length of the arc that connects the voter and the

receiver,κ = κ(x − x′) = 2 sinφ
l the curvature of the osculating circle,d a constant

that controls the decay with respect to curvature andσv is the length scale of anal-

ysis, which determines the effective neighbourhood size(expressed in voxels).

Consequently, the exponential term represents the distance-dependent attenuation

of the saliency. The orientation of the vote,~N, is obtained by dragging the vector

~v1 = [cosα (T(x′)) , sinα (T(x′))] that determines the orientation of the stick ten-

sor at voter pointx′, along the arc fromx′ to the receiver pointx (Figure2(A)):

~N = R(2φ)~v1, with R() denoting the rotation matrix.

Figure 2(B) depicts the stick voting tensor field, which is the collection of

the second order votes cast by a voter located at the origin, whose stick tensor

has unit saliency and orientation along the x-axis:V(x, 0). The extension of this

voting kernel is limited byσv (in practice it is about 3×σv) andφ ≤ 45o (Medioni

et al., 2000; Tong et al., 2004).

The voting mechanism expressed in Eq. (10) is usually interpreted as fol-

lows (Medioni et al., 2000; Tong et al., 2004). To compute the votes cast by a

voter x′, the stick voting fieldV(x, 0) is placed at the location of the voter and

with its orientationα = α(T(x′)) (Medioni et al., 2000; Tong et al., 2004), using

tensor rotation operations:

V(x − x′, α) = R(α) V(R−1(α)(x − x′), 0)R−1(α) (11)

Figure2(C) shows a sketch of this transformation and voting process. Most im-

plementations of tensor voting are based on this interpretation.

13
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3.1.4. Vote collection and interpretation of results

The votes received at each voxelx are collected and accumulated by tensor

addition so as to yield the resulting output tensorU(x). Thus, the voting process

described above can be considered as a tensor convolution ofthe input tensor field

T(x) with the voting fieldV(x, α):

U(x) =
∑

x′ ∈ Neigh(x)

S(T(x′)) V(x − x′, α(T(x′))) (12)

wherex′ represents a voter within the neighborhood ofx, which has saliency

S(T(x′)) and orientationα(T(x′)).

After TV, the output tensor fieldU(x) is expected to have more coherent struc-

tural information. Voxels belonging to the same geometric feature will have

strengthened each other and their tensors will have been modified to enhance the

underlying global structure. Interpretation of the final tensors is carried out as de-

scribed above, in Section3.1.1, leading to a more reliable estimates ofcurves(i.e.

voxels with highcurvesaliencyλ1 − λ2, and with the normal to thecurvepointed

by~v1).

3.2. Efficient implementation of Tensor Voting with steerable filters

Tensor voting is a computationally demanding procedure. The standard imple-

mentation consists of pre-computing and storing the votingfieldV(x, 0) (Eq. (10)).

Translation and rotation of the voting field throughout the image space needed for

casting votes (Eqs. (11; 12)) is done by interpolation. Alternatively, storing all ro-

tated voting fields would reduce the voting process to simplelook-up operations

and interpolation, but the memory consumption would be higher. There exists,

however, a more efficient implementation that takes advantage of the theory of

steerable filters (Franken et al., 2006). The requirement for selective orientation
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of the voting field is similar to that encountered with scalaroriented filters, the

optimal implementation of which is carried in the frameworkof the theory of

steerable filters (Freeman and Adelson, 1991).

In image processing, a steerable filter is a filter that can be oriented in an

arbitrary direction just by a linear combination of a finite number of predefined

rotations of the filter (so-called basis functions or filters) (Freeman and Adelson,

1991). Rotation of the steerable filterh by an angleα can be shown as:

h(x, α) =
M
∑

m=1

km(α)hm(x) (13)

wherehm(x) are the basis filters,km(α) are the linear coefficients that depend on

the rotation angleα, m denotes the index of the basis filters and the number of

basis filters isM. In practice, in order to reduce the number of the basis filters

required to steer the filter, they are taken from the nonzero coefficients of the an-

gular Fourier decomposition of the filter (Freeman and Adelson, 1991). Filtering

an imagef (x) with the oriented filterh(x, α) then becomes:

f (x) ∗ h(x, α) =
M
∑

m=1

km(α)( f (x) ∗ hm(x)) (14)

where∗ denotes convolution. In other words, an image filtered at an arbitrary

direction can be computed by a simple linear combination of the image filtered

with M basis filtershm, with coefficientskm(α). If M is sufficiently small, this

turns out to be a very efficient method for arbitrary oriented filtering of images.

Here we briefly describe the two key aspects of the derivationof steerable

approach to 2D TV in order to understand the internals of our implementation.

This derivation, together with the mathematical details, were nicely presented

in (Franken et al., 2006). First, steerable tensor voting uses a saliency decay func-

tion different from the original one (exponential term in Eq. (10)) so as to make
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the voting field bandlimited (i.e. to have a finite number of nonzero coefficients

of the angular Fourier decomposition):1
16e

−r2

2σ2
v cos4 φ.

Second, as explained in Section3.1.1, the tensors used in 2D TV are 2× 2

symmetric matrices having three independent components:{txx, txy, tyy}. Tensor

rotation (Eq. (11)) can be computed using a similarity transformation (Golub and

van Loan, 1996), as thoroughly described in (Franken et al., 2006) for a general

case. Furthermore, rotation of a pure stick tensor, as required here for votes,

simplifies to the rotation of a single functionV−2 derived from the components of

the tensor (Franken et al., 2006): V−2 = txx + 2itxy− tyy. This function allows easy

calculation of the saliency and orientation of the tensor, as defined in Eqs. (7) and

(8): S(V) = |V−2| andα(V) = 1
2 arg (V−2), respectively.

Thus, the steerable tensor field rotated by an angleα is finally reduced to the

rotation of the steerable functionV−2 (Franken et al., 2006):

V−2(x, α) =
4

∑

m=0

km(α)Vm(x) (15)

wherekm are the linear coefficients:

km(α) = e−2i(m−1)α (16)

andVm(x) are the basis filters given by:

Vm(x) = γm e
− x2+y2

2σ2
v















x+ iy
√

x2 + y2















2m

, for x = (x, y) , (0, 0) (17)

whereγm has constant values:{1, 4, 6, 4, 1} for m= 0 . . .4, respectively.

Therefore, the voting process originally expressed as a tensor convolution

(Eq. (12)) is reduced to a scalar steerable convolution that, similarly to Eq. (14),
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can be expressed as:

U−2(x) = S(T(x)) ∗ V−2(x, α(T(x))) =
4

∑

m=0

km(α(T(x)))(S(T(x)) ∗ Vm(x)) (18)

From here, calculation of the output saliency and orientation is straightfor-

ward, as mentioned above:

S(U(x)) = |U−2(x)|

α(U(x)) = 1
2 arg (U−2(x)).

(19)

Eqs. (18) and (19) reveal that only five convolutions are required to accomplish

TV. Moreover, computation of these convolutions in Fourierspeeds up the cal-

culation significantly (Franken et al., 2006). Therefore, this steerable approach

provides a very efficient implementation of TV, well suited to deal with large to-

mograms commonly encountered in ET.

The implementation of steerable 2D TV can then be summarisedas follows:

• Initialization of the input tensor field .

The saliency and orientation of the input tensor field, (Sin(x) andαin(x))

are initialized based on the eigenvalues (λi) and eigenvectors (~vi) of the2D

Hessian or Structure tensorof the input 2D slice(see Eqs. (7) and (8)):

Sin(x) = S(T(x)) = |λ1 − λ2| (20)

αin(x) = α(T(x)) = arccos (~v1 · êx) (21)

• Tensor voting.
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The output saliencySout(x) is computed according to the following expres-

sion derived from Eqs. (18) and (19):

Sout(x) = S(U(x)) =

∣

∣

∣

∣

∣

∣

∣

4
∑

m=0

km(αin(x))(Sin(x) ∗ Vm(x))

∣

∣

∣

∣

∣

∣

∣

(22)

with km(αin(x)) andVm(x) given by Eqs. (16) and (17), respectively, and the

convolutions being computed in Fourier space.

As mentioned above, our approach to apply TV on a tomogram involves appli-

cation of this efficient 2D computational procedure to 2D slices of the tomogram

along the three major axes. The final output surface saliencyfor each voxel is

taken as the average of the three curve saliency values available. To reduce the

distortion caused by the missing wedge, the input saliency values of the voxels

with orientation|α(T(x))| > ω are set to zero, withω being the maximum tilt an-

gle used in the tilt-series acquisition. This constraint isapplied for voxels in xz-

and yz-planes.

Figure3 shows the ability of TV to detect membranes correctly even inthe

presence of membrane-attached structures and to fill the gaps present in mem-

branes when applied to a cellular cryo-tomogram. Supplementary Figure S1 also

illustrates that the output saliency proves to be well suited for automated mem-

brane detection.
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4. Tensor Voting-based membrane detection

In this section we present the whole procedure devised to detect membranes.

It relies on an improved local detector of membranes (or plane-like structures in

general) based on TV. The use of TV provides robustness so that at the end of

the process membranes are extracted by a simple thresholding operation. This

procedure is named TomoSegMemTV and consists of the following stages:

1. Filtering and scale-space of the input tomogram.

This stage aims to reduce noise and filter out structural information smaller

than the scale of interestσ. It also helps to ensure that edges and ridges

approach Gaussian profiles, which is important for Stage 3. Usually a

Gaussian low-pass filtering is used, but more aggressive noise reduction

techniques, such as the anisotropic nonlinear diffusion filter (Frangakis and

Hegerl, 2001; Fernandez and Li, 2003, 2005) might be used before scale-

space so as to substantially remove noise, flatten background and preserve

and enhance features of interest. However, to our experience, the actual ef-

fect that this filtering has on the performance of the segmentation algorithm

is not significant.

2. Tensor voting on surface saliency.

TV is applied to enhance the local surface information provided by the Hes-

sian or the Structure tensor of the scale-spaced tomogram. If the aim is to

detect ridges, the Hessian tensor is used as an input to TV. Ifedges are to be

detected, the Structure tensor is used. Note that in the latter case the output

surface information will refer to the middle of the edges butit would be

otherwise equivalent to the information obtained by the useof the Hessian

tensor, as explained in Section2.2. Hence, the remaining stages proceed in

19



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

the same way, regardless of the input tensor used. The performance of TV

applied to a cryo-tomogram of a synapse is illustrated in Figure4.

3. Local surface detection and characterization.

The NMS detector defined in Eq. (3) is employed to detect membrane struc-

tures from the surface saliency obtained by the previous stage. This results

in a 1-voxel-thick surface, which represents the centerlines of the potential

membranes(Figure5(E)). Next, the extracted points are subjected to char-

acterization through planarity descriptors, which determine the probability

of belonging to a surface. As it was done for vessel detectionin MRI (Frangi

et al., 1998) and cell membranes in optical microscopy (Mosaliganti et al.,

2012), 3D planarity map is defined by the following mathematical expres-

sion:

P(x) =



















Ps(x) · Pp(x), ∀x ∈ S

0, otherwise
(23)

with

Ps(x) = 1− e−λ1(x)/λ̂1 Pp(x) = 1− e−p(x)/p̂, (24)

wherex are voxel coordinates,S is a binary mask resulting from the NMS

operation, and ˆ· is the arithmetic mean of the samples in theS domain.

p is the descriptor that measures planarity of a structure according to the

eigenvalues of the Hessian tensor of the scale-spaced volume:

p = 1− |λ2|
|λ1|
, (25)

Ps enhances points that stand out from the background, whereasPp those

exhibiting locally planar structure. These definitions ensure that the pla-

narity map takes values in the range [0, 1] and that the contribution of fac-

tors Ps and Pp to P are equally important. The weight of the factorsλ1
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andp(x) is automatically controlled through their means inS. The example

presented in Figure5 shows that these descriptors complement each other.

4. Tensor voting for bridging gaps.

It is possible to observe in Figure5 that the descriptorP gives an output that

is similar to the expected segmentation. However, direct thresholding ofP

may still produce holes in those membrane regions with lowerP values. In

order to makeP more uniform and fill potential gaps, TV is applied on the

Hessian tensor ofP, using the same parameter configuration as in Stage 2.

Prior to TV,P is subjected to Gaussian filtering (σ ≈ 0.5) to make it slightly

denser (note thatP is sparse as it results from a NMS operation).

5. Local membrane detector.

The map resulting from the previous stage could already be used as a local

detector of membranes. However, we find it useful to proceed with the

eigen-analysis of the Hessian tensor of that map to extract the absolute value

of the largest eigenvalue (|λ1|, with λ1 < 0; 0 otherwise), followed by NMS.

The resulting map (Figure6(Left)) is more robust thanP (Figure5(D)) in

the sense that the difference between the membranes and the other points

is higher. This is because|λ1| is more sensitive to the density and can thus

detect true membrane points. In addition, the eigen-analysis performed at

this stage provides the information about the direction perpendicular to the

membrane (~v1) at all membrane points.

6. Thresholding and global analysis.

This post-processing stage aims to analyze and integrate, at a global scale,

the local structural information derived in the previous stages. First, spuri-

ous structures have to be rejected. The robustness of the membrane detector
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of the previous stage enables this rejection by a simple standard threshold-

ing procedure (Figure6(Center)). Second, a global analysis, based for in-

stance on volumetric size, helps to discern whether the segmented structures

are actual membranes and also to distinguish between different types of

membranes, as described previously (Martinez-Sanchez et al., 2011) (Fig-

ure 6(Right)). More sophisticated global analysis could be used, such as

that based on clustering of the local membrane density profile (along the di-

rection perpendicular to the membrane~v1) (Martinez-Sanchez et al., 2013).

The output of TomoSegMemTV consists of 1-voxel thick surfaces. The mem-

brane thickness can be easily increased by means of morphological operations.

The whole procedure works in 3D except Stages 2 and 4, which are based on

the application of TV to 2D slices, as described earlier. Stages 3 and 5, however,

are based on the 3D Hessian tensor (see Section2) calculated for all voxels of the

corresponding input map.

The tuning of the parameters required by the algorithm is relatively simple.

The key parameter for TV isσv, which is related to the SNR/contrast. The poorer

SNR/contrast conditions are, the higherσv should be.As this parameter defines

the neighbourhood in TV, higher values tend to emphasize larger membranes over

smaller ones (for instance, compare synaptic membranes to vesicles in Figure4).

In our experiments, values in the range from 5 to 15 voxels were taken. The

thresholdtb on the response of the membrane detector is required at the last stage

to produce the output binary map. It can be easily set by the user based on visual

inspection (see Figure6). At this point, a threshold on the volumetric sizetv

of the segmented structures may be required to extract the targeted membranes.

The scaleσ for scale-space operation should be tuned according to the membrane
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thickness in the tomograms. The parameterω is given by the maximum tilt angle

used in the tilt-series acquisition. With regard to the parametersδ and tM of the

NMS detector (Eq. (3)), in this work they were fixed to 0.71 and 0.03, respectively.

5. Results

5.1. Validation of the method

A quantitative analysis based on a synthetic phantom tomogram under differ-

ent noise conditions was performed to validate TomoSegMemTV. The evaluation

includes a comparison with a standard technique, template matching.

Template matching underlies recent approaches for automated segmentation

of specific structures (Fernandez, 2012), including membranes (Lebbink et al.,

2007, 2010). In these works, a template suitable for membranes (typically a

cuboid shape) is rotated, adjusted to account for the distortion caused by the miss-

ing wedge and cross-correlated with the tomogram (Lebbink et al., 2007). The

resulting cross-correlation map, which gathers the results from all possible rotated

versions of the template, is then thresholded to obtain the final segmentation.

The phantom (ground truth) that we have designed for this validation in-

cludes a number of geometric features resembling membranes, vesicles and tubu-

lar structures (see Supplementary Figures S3 and S4). To simulate macromolec-

ular crowding, theSaccharomyces cerevisiae80S ribosome structure, taken from

the EM databank (http://emdatabank.org; entry emd-1076), was properly scaled,

randomly oriented and placed throughout the phantom tomogram. We tested dif-

ferent number of ribosomes (1000, 5000 and 10000) and different noise conditions

(SNR=0.05, 0.1 and 2). For template matching, we used the Molmatchimplemen-

tation (Forster et al., 2010) with a template consisting of a plane with the thickness

of the membranes in the phantom. For TomoSegMemTV,σ andσv were set to
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1 and 10, respectively. In order to ensure a fair comparison between template

matching and TomoSegMemTV, the same strategy was used for the thresholding

and global analysis (see Supplementary Material, Section S.5.1).

The metrics used for the quantitative analysis are the following. First, the frac-

tion of true positives (TPF; also known as sensitivity) is the fraction of membrane

points that have been correctly classified. Second, the fraction of true negatives

(TNF; also known as specificity) is the fraction of non-membrane points that have

been correctly left out of the membranes. Third, the precision (PR) gives the pro-

portion of overlapping/concordance between the phantom and the segmentation

(see (Garduno et al., 2008; Martinez-Sanchez et al., 2011, 2013) for more infor-

mation about these metrics). IfHg and H are the binary representations of the

ground truth (i.e. the phantom) and the segmentation resultrespectively, these

metrics are defined as: TPF= |H∩Hg|
|Hg| , TNF =

|HC∩HC
g |

|HC
g |

, and PR= |H∩Hg|
|H∪Hg| , where| · | is

the number of elements in a set,∪ and∩ represent the union and intersection set

operations, respectively, andAC denotes the complement of setA.

Tables1 and2 summarize the results obtained from the evaluation. As ex-

pected, the performance of both techniques deteriorates with decreasing SNR and

increasing macromolecular crowding. In particular, the latter factor severely de-

grades the performance of template matching. These resultsshow that TomoSeg-

MemTV is much more robust to noise and crowding and outperforms template

matching, having sensitivity (TPF) around 90%. It is remarkable that TomoSeg-

MemTV under the worst conditions (SNR=0.05 and 10000 ribosomes) presents

behaviour similar to template matching in the best scenariotested here (SNR=2

and 1000 ribosomes). Supplementary Figures S3 and S4 show examples of the

performance of the methods on the phantom.
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Similar behaviour is observed when applied to experimentalcryo-tomograms,

as presented in Supplementary Section S.5.1 and Figure S5. There, an example of

cryo-tomogram of neuronal synapse shows the limitations oftemplate matching.

No optimal threshold is found, leading to false positives and negatives. On the

contrary, the thresholding in TomoSegMemTV is straightforward and membranes

turn out to be well delineated.

5.2. Applications to experimental datasets

In this section, illustrative examples of the application of TomoSegMemTV to

several experimental datasets are shown.

5.2.1. Human Immunodeficiency virus

The segmentation method presented here was applied to a cryo-tomogram of

HIV-1 virions that was taken from the EM databank (http://emdatabank.org; entry

emd-1155) (Briggs et al., 2006). This tomogram has been often used in the field

to test denoising and segmentation algorithms (e.g. (van der Heide et al., 2007;

Fernandez, 2009)). The tomogram was first subjected to the membrane detec-

tion algorithm that we developed previously, TomoSegMem (Martinez-Sanchez

et al., 2011). In general, it allowed good delineation of the outer membranes of

the virions, as shown in Figure7. However, the limitations of the technique are

evidenced by some imperfections, such as gaps in the membranes (green arrow-

heads) or residual structures apposed to them (yellow arrowheads) that arise from

the dense material in the interior of the virions.

The use of TomoSegMemTV overcame those limitations. Tensorvoting and

the planarity characterization make the method more robustand more sensitive

to membranes, as shown in Figure7. This is reflected in the continuity of the

membranes of the virions, which are free of gaps and spuriousprotrusions.
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5.2.2. Caulobacter Crescentus

As an example of detection of a membrane with edge-like profile, we took a

tomogram ofCaulobacter Crescentus, a gram-negative bacterium, from the Cell-

Centered database (http://ccdb.ucsd.edu; entry 3647). We focused on the detection

of the outer interface of the bacterial wall. To do so, we followed the TomoSeg-

MemTV algorithm but, as already described, we used the Structure tensor at Stage

2 of the algorithm instead of the Hessian tensor (see Section2). The remaining

stages of the algorithm proceeded in the same way as if the Hessian tensor was

used. Figure8 shows that TomoSegMemTV succeeded in detecting the outer

membrane.

The availability of information about the normal to the membrane for all seg-

mented points opened up the possibility of further analysis. In this particular

case, we extracted density profiles in the direction perpendicular to the membrane

to obtain an average density profile at a higher resolution. Supplementary Fig-

ure S6 shows the average computed from 31400 orientationally aligned profiles

that were calculated from the tomogram ofCaulobacter Crescentus,using To-

moSegMemTV. This figure shows peaks corresponding to the inner membrane,

the peptidoglycan layer and the outer interface of the bacterial wall.

5.2.3. Neuronal synapses

During the course of this work, TomoSegMemTV has been testedon numer-

ous cryo-tomograms of neuronal synapses. Actually, the developments have been

motivated in part by the particular characteristics of those datasets (multiple struc-

tures attached to the membranes and/or gaps due to the low SNR and contrast,

among other factors), which make automated segmentation especially challeng-

ing. Such datasets were used to illustrate the methods presented here. Details
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regarding sample preparation and tomogram generation of these datasets can be

found in Supplementary Material, Section S.5.2.3.

Synapses consist of pre- and postsynaptic terminals and contain a number

of structural components that have to be segmented from the tomograms. The

plasma membranes of the interacting neurons (referred to aspre-synaptic and

post-synaptic membranes) were detected by the procedure presented here (Fig-

ures6 and 9). At the synapse, those membranes are directly apposed to each

other and are separated by a uniform distance, thus defining the synaptic cleft.

Output normals provided by TomoSegMemTV allowed the determination of the

shortest distance between two membranes at every point. Synaptic membranes

were detected based on their high volumetric size. Their portions that delineate

the synaptic cleft were labelled based on the distinctive inter-membrane distance

(Figure9). The presynaptic terminal contains machinery for the neurotransmit-

ter release and comprises vesicles, as well as short filaments that interconnects

the vesicles and tether them to the synaptic membrane. The entire presynaptic

cytoplasm was segmented using morphological dilation operations, starting from

a point selected by the user and using the segmented membranes as boundaries

(Figure9). Because synaptic vesicles are spherical and have uniformsize, they

were detected by standard template matching procedures, but taking into account

the distortion induced by the missing wedge (Bohm et al., 2000). Figure10shows

3D views of the segmentations of some datasets.

6. Discussion and Conclusion

Segmentation of electron tomograms recorded from biological samples is im-

portant for the interpretation and visualization of their structural components and
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is necessary for their further computational analysis. Here we present TomoSeg-

MemTV, a procedure for membrane segmentation based on Tensor Voting. It

relies on an improved local membrane detector that propagates differential infor-

mation within the neighbourhood of each voxel in an anisotropic way, according

to the underlying global structure. This strategy providesthe algorithm with the

ability to fill gaps present along the membranes. Moreover, it confers robustness

against other structures attached to membranes and againstthe low SNR typi-

cally found in cryo-tomograms. The algorithm has been validated and tested on

a number of experimental datasets, with special focus on thesegmentation of the

structures required for the analysis of neuronal synapses.

TomoSegMemTV can detect structures with either ridge or edge profiles, by

simply choosing the Hessian tensor or the Structure Tensor based local detec-

tor, respectively. Moreover, the algorithm yields not onlythe set of segmented

membrane points, but also the normals to the membranes.This enables more

sophisticated structural analyses, such as characterization and classification of

membranes according to their local properties (Martinez-Sanchez et al., 2013).

TomoSegMemTV can also be used for determination of average membrane pro-

files, enabling automated tomographic data analysis. Previous approaches only

allowed limited averaging, used semi-automated procedures or required sophis-

ticated techniques (Li et al., 2007; Hoffmann et al., 2008; Zuber et al., 2008;

Tocheva et al., 2011).

The output yielded by the local detector of TomoSegMemTV turned out to be

very robust, which enabled the use of a simple thresholding procedure to select

the putative true membrane points. Therefore, this constitutes an advantage over

other methods used in the field including our previous detector (Martinez-Sanchez

28



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

et al., 2011), where a more complex hysteresis thresholding stage was required.

Moreover, template matching is a prominent technique that supports segmenta-

tion approaches targeting filamentous or membranous structures (Lebbink et al.,

2007; Rigort et al., 2012). However, template matching tends to produce spuri-

ous correlation peaks in overcrowded environments, particularly under low SNR

as is the case in electron cryo-tomography, which limits theperformance of the

thresholding operation over the cross-correlation map. Asa consequence, an op-

timum threshold cannot be found and the thresholded map often contains residual

false positives or gaps in the targeted structures (false negatives). By contrast,

the robustness of TomoSegMemTV makes it less susceptible tothis problem. An

additional advantage over template matching is that methods based on differential

geometry are more flexible to adapt to high membrane curvature (Lebbink et al.,

2007).

A quantitative evaluation of phantom datasets has been performed using stan-

dard quality metrics for the task of membrane detection under realistic noise and

crowding conditions. This analysis has confirmed that the algorithm performs

well under different noise levels, including very low SNR, and in the presence

of a large macromolecular population. Moreover, this assessment has shown that

TomoSegMemTV clearly outperforms template matching. These objective re-

sults have also been reflected on the application to experimental datasets, where

TomoSegMemTV exhibited very good behaviour under different conditions.

An important benefit from the user’s point of view concerns parameter setting.

Compared to our previous method (Martinez-Sanchez et al., 2011), the number of

key parameters is reduced. Some of them are fixed by the experimental imaging

conditions, while the tuning of others is straightforward.Essentially, only the
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following parameters need to be tuned: the scale of Tensor Voting σv, which

depends on the SNRand the membrane size, the threshold applied to the local

membrane detector and the volume threshold used in the global analysis stage,

which is determined by the size of membranes.

The implementation of TomoSegMemTV follows a steerable approach to ten-

sor voting, which makes it particularly efficient to deal with the large datasets

commonly found in electron tomography. In addition, we haveapplied multi-

threading techniques to further accelerate the program (Fernandez, 2008). As a

result, tomograms of typical size are segmented in a matter of minutes on stan-

dard multicore computers. This is an advantage over template matching, which

requires significant processing time (Bohm et al., 2000; Lebbink et al., 2007). A

software package implementing TomoSegMemTV has been developed for public

use and it is available upon request.The software has been developed in MatlabR©,

though computational demanding routines were coded in C++ in order to increase

the execution speed. A complementary package, SynapSegTools, with Graphical

User Interface for intuitive and friendly segmentation of synapsis is also available.

The segmentation procedure presented here may facilitate subsequent higher

resolution structural studies. For example, the precise membrane localization

and orientation can provide alignment for subtomogram averaging of membrane-

associated complexes (e.g. (Pfeffer et al., 2012; Zanetti et al., 2013)). Moreover,

our future interests also include further development of the tensor voting algo-

rithm to detect other structures, such as curvilinear components or macromolecu-

lar complexes.
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Figure Legends

Figure 1. Response of detectors based on Hessian tensor and Structuretensor.

(Left) A ridge profile is shown in blue and the absolute value of the largest eigen-

value of the Hessian Tensor, i.e. second order derivative (the positive values have

been set to zero as in Eq. (2)) in red. The dashed line marks the ridge point where

the major eigenvalue reaches its local maximum. (Right) A function showing an

edge profile in blue and the largest eigenvalue of the Structure Tensor, i.e. first

order derivative, in red. The dashed line marks the edge point where the major

eigenvalue reaches its local maximum. The values of the eigenvalues have been

normalized to fit the range of the function.

Figure 2. Tensor Voting in 2D. (A) Model for vote casting based on a stick tensor.

The voter atx′ is shown with its normal in green. The voxelx is the receiver. The

dashed arc represents the arc of a circle passing throughx′ andx, which is the most

likely smooth path between these points. The orientation ofthe vote cast fromx′

to x is shown in red. (B) 2D stick voting field calculated forσv = 10. The center

of the field is placed at the origin, and the normal oriented along the x-axis. The

8-shape encompasses the votes with most significant saliency. (C) Tensor voting

mechanism. Votes cast from three voters (orientation vectors in green) belonging

to a curve (black) are shown. The votes are cast to all voxels in the neighbour-

hood, while the contributions to some receivers belonging to the same curve are

shown as red dotted arrows. At the end of the voting process, voxels belonging

to the curve (a geometric feature) will have been strengthened, hence enhancing

the feature. The other voxels will have received divergent information, which will
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smear them out.

Figure 3. Performance of tensor voting with cryo-ET data. (Left) a slice of a

cryo-tomogram of a synaptic active zone. The green arrow points to a membrane

gap. The yellow arrows point to structures anchored to the membranes. (Right)

Output of our TV implementation where membranes are enhanced, the gaps are

filled and the membrane-attached structures are disregarded. In this example, the

parameters were set toσ = 2 andσv = 10.

Figure 4. Tensor voting applied to an experimental cryo-tomogram of asynapse.

(Left) a slice of the original tomogram. (Right) Output of our TV implementation,

withσv set to 7. Prior to TV, the tomogram was subjected to scale-space operation

with σ=3. Pixel size at the specimen level= 1.87 nm. Bar= 100 nm.

Figure 5. Local surface characterization. (A) Colormap used for descriptors

shown in panels B-E. Blue color corresponds to the minimum value and red to

the maximum. (B-D) Planarity descriptors presented in Stage 3 of the TomoSeg-

MemTV procedure. (B)Ps of the slice in Figure4(Left). (C) Pp. (D) P. (E) This

panel is obtained by the application of the NMS detector (Eq.(3)) to the output of

TV (Figure4(Right)) and it is used as the input for the computation of planarity

descriptors (panels B-D). When compared to (D), the higher robustness of the de-

scriptor P throughout the major membranes becomes apparent.

Figure 6. Final stages of membrane detection with TomoSegMemTV. (Left) Out-

put from the local membrane detector in TomoSegMemTV (Stage5). Notice that
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this output is more robust thanP shown in Figure5(D). (Center) Result after

thresholding (Stage 6). (Right) Result of the global analysis based on volume

(Stage 6): the color encodes the volume measured for every membrane according

with the colormap in Figure5(A).

Figure 7. TomoSegMemTV applied to a cryo-tomogram of HIV-1 virions. (A)

Slice of the original tomogram. (B) Scale-space withσ = 2. (C) Output of the

local membrane detector of TomoSegMem (also known as Membrane strength,

presented here in Eq. (2)). (D) Final segmentation of TomoSegMem through hys-

teresis thresholding and global analysis based on size (Martinez-Sanchez et al.,

2011). The three virions are shown with different grey values that encode the size

of every segmented membrane. Green arrowheads point to gapsand yellow arrow-

heads point to spurious segmented structures apposed to membranes. (E) Output

of the local membrane detector of TomoSegMemTV (Stage 5 in Section 4). (F)

Final segmentation of TomoSegMemTV (σv = 10) through simple thresholding

and size-based global analysis. The gaps and the structuresapposed have disap-

peared. Grey values represent the size of the segmented membrane.Pixel size at

the specimen level= 1.64 nm. Bar= 100 nm.

Figure 8. TomoSegMemTV applied to a tomogram ofCaulobacter Crescentus.

From left to right, the panels show a slice of the original tomogram, the delineated

membrane and a 3D view of the segmented structure (σv = 10 andσ = 3). Pixel

size at the specimen level= 2.84 nm. Bar= 400 nm.

39



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Figure 9. Segmentation by TomoSegMemTV of three different cryo-tomograms

of neuronal synapses. We usedσv ∈ [5, 10] andσ ∈ [1.5, 2]. These datasets

were denoised by anisotropic nonlinear diffusion prior to the segmentation. (A,B)

Tomogram 1, shown already on Figure6. (A) Detection of the pre- and post-

synaptic membranes (green) and themembrane regions that delineate the synaptic

cleft (red). Note the little effect provided by the prior use of anisotropic nonlinear

diffusion when compared to Figures4 and 6. (B) Pre-synaptic cytoplasm (blue)

was segmented using dilation operations from a point selected by the user (see

panel A) and with the segmented membranes acting as boundaries. Part of the

cytoplasm that lies within a specified distance to the synaptic cleft is highlighted

in cyan. The vesicles (yellow) were detected by template matching using spheres

distorted by the missing wedge as references. (C-F) Tomogram 2. (C) Slice of the

tomogram. The arrow points to an area zoomed in (E,F). (D) Segmentation. The

same colors as in (A,B) are used to denote the segmented membranes and regions.

In violet, a mitochondrion is extracted with TomoSegMemTV configured for de-

tecting edge-like structures. (E) Membranes in tomograms often present holes or

appear blurred. Tensor Voting succeeded in bridging these gaps (F). (G,H) To-

mogram 3. Segmented structures use the same color code as above. The panels

also show the graphical user interface developed in this work. Pixel size at the

specimen level= 1.87 nm.

Figure 10. 3D visualization of several segmented cryo-tomograms of neuronal

synapses. Segmented membranes are shown in blue,the boundaries of the synap-

tic cleft in red andvesicles in yellow.
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Figure 1: Response of detectors based on Hessian tensor and Structure tensor. (Left) A ridge
profile is shown in blue and the absolute value of the largest eigenvalue of the Hessian Tensor,
i.e. second order derivative (the positive values have beenset to zero as in Eq. (2)) in red. The
dashed line marks the ridge point where the major eigenvaluereaches its local maximum. (Right)
A function showing an edge profile in blue and the largest eigenvalue of the Structure Tensor, i.e.
first order derivative, in red. The dashed line marks the edgepoint where the major eigenvalue
reaches its local maximum. The values of the eigenvalues have been normalized to fit the range of
the function.
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Figure 2: Tensor Voting in 2D. (A) Model for vote casting based on a stick tensor. The voter atx′

is shown with its normal in green. The voxelx is the receiver. The dashed arc represents the arc of
a circle passing throughx′ andx, which is the most likely smooth path between these points. The
orientation of the vote cast fromx′ to x is shown in red. (B) 2D stick voting field calculated for
σv = 10. The center of the field is placed at the origin, and the normal oriented along the x-axis.
The 8-shape encompasses the votes with most significant saliency. (C) Tensor voting mechanism.
Votes cast from three voters (orientation vectors in green)belonging to a curve (black) are shown.
The votes are cast to all voxels in the neighbourhood, while the contributions to some receivers
belonging to the same curve are shown as red dotted arrows. Atthe end of the voting process,
voxels belonging to the curve (a geometric feature) will have been strengthened, hence enhancing
the feature. The other voxels will have received divergent information, which will smear them out.
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Figure 3: Performance of tensor voting with cryo-ET data. (Left) a slice of a cryo-tomogram of
a synaptic active zone. The green arrow points to a membrane gap. The yellow arrows point to
structures anchored to the membranes. (Right) Output of ourTV implementation where mem-
branes are enhanced, the gaps are filled and the membrane-attached structures are disregarded. In
this example, the parameters were set toσ = 2 andσv = 10.
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Figure 4: Tensor voting applied to an experimental cryo-tomogram of a synapse. (Left) a slice of
the original tomogram. (Right) Output of our TV implementation, with σv set to 7. Prior to TV,
the tomogram was subjected to scale-space operation withσ=3. Pixel size at the specimen level
= 1.87 nm. Bar= 100 nm.
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Figure 5: Local surface characterization. (A) Colormap used for descriptors shown in panels B-E.
Blue color corresponds to the minimum value and red to the maximum. (B-D) Planarity descriptors
presented in Stage 3 of the TomoSegMemTV procedure. (B)Ps of the slice in Figure4(Left). (C)
Pp. (D) P. (E)This panel is obtained by the application of the NMS detector(Eq. (3)) to the output
of TV (Figure 4(Right)) and it is used as the input for the computation of planarity descriptors
(panels B-D). When compared to (D), the higher robustness ofthe descriptor P throughout the
major membranes becomes apparent.
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Figure 6: Final stages of membrane detection with TomoSegMemTV. (Left) Output from the local
membrane detector in TomoSegMemTV (Stage 5). Notice that this output is more robust thanP
shown in Figure5(D). (Center) Result after thresholding (Stage 6). (Right)Result of the global
analysis based on volume (Stage 6): the color encodes the volume measured for every membrane
according with the colormap in Figure5(A).
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Figure 7: TomoSegMemTV applied to a cryo-tomogram of HIV-1 virions. (A) Slice of the original
tomogram. (B) Scale-space withσ = 2. (C) Output of the local membrane detector of TomoSeg-
Mem (also known as Membrane strength, presented here in Eq. (2)). (D) Final segmentation of To-
moSegMem through hysteresis thresholding and global analysis based on size (Martinez-Sanchez
et al., 2011). The three virions are shown with different grey values that encode the size of every
segmented membrane. Green arrowheads point to gaps and yellow arrowheads point to spurious
segmented structures apposed to membranes. (E) Output of the local membrane detector of To-
moSegMemTV (Stage 5 in Section4). (F) Final segmentation of TomoSegMemTV (σv = 10)
through simple thresholding and size-based global analysis. The gaps and the structures apposed
have disappeared. Grey values represent the size of the segmented membrane.Pixel size at the
specimen level= 1.64 nm. Bar= 100 nm.
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Figure 8: TomoSegMemTV applied to a tomogram ofCaulobacter Crescentus. From left to right,
the panels show a slice of the original tomogram, the delineated membrane and a 3D view of the
segmented structure (σv = 10 andσ = 3). Pixel size at the specimen level= 2.84 nm. Bar= 400
nm.
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Figure 9: Segmentation by TomoSegMemTV of three different cryo-tomograms of neuronal
synapses. We usedσv ∈ [5, 10] andσ ∈ [1.5, 2]. These datasets were denoised by anisotropic
nonlinear diffusion prior to the segmentation. (A,B) Tomogram 1, shown already on Figure6. (A)
Detection of the pre- and post-synaptic membranes (green) and themembrane regions that delin-
eate the synaptic cleft (red). Note the little effect provided by the prior use of anisotropic nonlinear
diffusion when compared to Figures4 and 6. (B) Pre-synaptic cytoplasm (blue) was segmented
using dilation operations from a point selected by the user (see panel A) and with the segmented
membranes acting as boundaries.Part of the cytoplasm that lies within a specified distance tothe
synaptic cleftis highlighted in cyan. The vesicles (yellow) were detectedby template matching
using spheres distorted by the missing wedge as references.(C-F) Tomogram 2. (C) Slice of the
tomogram. The arrow points to an area zoomed in (E,F). (D) Segmentation. The same colors as
in (A,B) are used to denote the segmented membranes and regions. In violet, a mitochondrion is
extracted with TomoSegMemTV configured for detecting edge-like structures. (E) Membranes in
tomograms often present holes or appear blurred. Tensor Voting succeeded in bridging these gaps
(F). (G,H) Tomogram 3. Segmented structures use the same color code as above. The panels also
show the graphical user interface developed in this work.Pixel size at the specimen level= 1.87
nm.
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Figure 10: 3D visualization of several segmented cryo-tomograms of neuronal synapses. Seg-
mented membranes are shown in blue,the boundaries of the synaptic cleft in red andvesicles in
yellow.
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Table 1: Quantitative analysis based on synthetic phantom for TomoSegMemTV.
1000 Ribosomes 5000 Ribosomes 10000 Ribosomes

SNR PR TPF TNF PR TPF TNF PR TPF TNF
0.05 0.8434 0.9167 0.9947 0.8266 0.9096 0.9941 0.7193 0.8306 0.9906
0.1 0.8474 0.9231 0.9946 0.8332 0.9116 0.9938 0.8004 0.89150.9925
2 0.8487 0.9274 0.9939 0.8487 0.9274 0.9939 0.8373 0.9178 0.9937
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Table 2: Quantitative analysis based on synthetic phantom for Template Matching.
1000 Ribosomes 5000 Ribosomes 10000 Ribosomes

SNR PR TPF TNF PR TPF TNF PR TPF TNF
0.05 0.7538 0.8524 0.9921 0.6440 0.7639 0.9878 0.3953 0.4753 0.9867
0.1 0.7640 0.8769 0.9903 0.6859 0.8209 0.9871 0.4671 0.53000.9911
2 0.7766 0.8655 0.9932 0.6920 0.8158 0.9882 0.5460 0.6324 0.9896
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