Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.14670/HH-18-355

Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorHallett, Shawn A.-
dc.contributor.authorOno, Wanida-
dc.contributor.authorOno, Noriaki-
dc.date.accessioned2023-01-26T11:18:01Z-
dc.date.available2023-01-26T11:18:01Z-
dc.date.issued2021-
dc.identifier.citationHistology and Histopathology Vol. 36, nº10 (2021)es
dc.identifier.issn0213-3911-
dc.identifier.issn1699-5848-
dc.identifier.urihttp://hdl.handle.net/10201/127896-
dc.description.abstractHypertrophic chondrocytes are the master regulators of endochondral ossification; however, their ultimate cell fates cells remain largely elusive due to their transient nature. Historically, hypertrophic chondrocytes have been considered as the terminal state of growth plate chondrocytes, which are destined to meet their inevitable demise at the primary spongiosa. Chondrocyte hypertrophy is accompanied by increased organelle synthesis and rapid intracellular water uptake, which serve as the major drivers of longitudinal bone growth. This process is delicately regulated by major signaling pathways and their target genes, including growth hormone (GH), insulin growth factor-1 (IGF-1), indian hedgehog (Ihh), parathyroid hormone-related protein (PTHrP), bone morphogenetic proteins (BMPs), sex determining region Y-box 9 (Sox9), runt-related transcription factors (Runx) and fibroblast growth factor receptors (FGFRs). Hypertrophic chondrocytes orchestrate endochondral ossification by regulating osteogenic-angiogenic and osteogenic-osteoclastic coupling through the production of vascular endothelial growth factor (VEGF), receptor activator of nuclear factor kappa-B ligand (RANKL) and matrix metallopeptidases-9/13 (MMP-9/13). Hypertrophic chondrocytes also indirectly regulate resorption of the cartilaginous extracellular matrix, by controlling formation of a special subtype of osteoclasts termed "chondroclasts". Notably, hypertrophic chondrocytes may possess innate potential for plasticity, reentering the cell cycle and differentiating into osteoblasts and other types of mesenchymal cells in the marrow space. We may be able to harness this unique plasticity for therapeutic purposes, for a variety of skeletal abnormalities and injuries. In this review, we discuss the morphological and molecular properties of hypertrophic chondrocytes, which carry out important functions during skeletal growth and regeneration.es
dc.formatapplication/pdfes
dc.format.extent16es
dc.languageenges
dc.publisherUniversidad de Murcia, Departamento de Biologia Celular e Histiologiaes
dc.relationSin financiación externa a la Universidades
dc.rightsinfo:eu-repo/semantics/openAccesses
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectGrowth platees
dc.subjectHypertrophyes
dc.subjectChondrocytees
dc.subjectChondroclastes
dc.subjectOsteoblastes
dc.subjectPrimary spongiosaes
dc.subjectTransdifferentiationes
dc.subjectApoptosises
dc.subjectType X collagenes
dc.subjectVascular endothelial growth factores
dc.subjectMatrix metalloproteinase 9es
dc.subjectInsulin like growth factor-1es
dc.subjectBone morphogenetic proteines
dc.subjectSRY-Box transcription factor 9es
dc.subjectRunt-related transcription factor 2es
dc.subjectFibroblast growth factor receptor 3es
dc.subject.otherCDU::6 - Ciencias aplicadas::61 - Medicina::616 - Patología. Medicina clínica. Oncologíaes
dc.titleThe hypertrophic chondrocyte: To be or not to bees
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doihttps://doi.org/10.14670/HH-18-355-
Aparece en las colecciones:Vol.36,nº10 (2021)

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
Hallett-36-1021-1036-2021.pdf2,46 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons