
Summary. Hypertrophic chondrocytes are the master
regulators of endochondral ossification; however, their
ultimate cell fates cells remain largely elusive due to
their transient nature. Historically, hypertrophic
chondrocytes have been considered as the terminal state
of growth plate chondrocytes, which are destined to
meet their inevitable demise at the primary spongiosa.
Chondrocyte hypertrophy is accompanied by increased
organelle synthesis and rapid intracellular water uptake,
which serve as the major drivers of longitudinal bone
growth. This process is delicately regulated by major
signaling pathways and their target genes, including
growth hormone (GH), insulin growth factor-1 (IGF-1),
indian hedgehog (Ihh), parathyroid hormone-related
protein (PTHrP), bone morphogenetic proteins (BMPs),
sex determining region Y-box 9 (Sox9), runt-related
transcription factors (Runx) and fibroblast growth factor
receptors (FGFRs). Hypertrophic chondrocytes
orchestrate endochondral ossification by regulating
osteogenic-angiogenic and osteogenic-osteoclastic
coupling through the production of vascular endothelial
growth factor (VEGF), receptor activator of nuclear
factor kappa-B ligand (RANKL) and matrix
metallopeptidases-9/13 (MMP-9/13). Hypertrophic
chondrocytes also indirectly regulate resorption of the
cartilaginous extracellular matrix, by controlling
formation of a special subtype of osteoclasts termed
"chondroclasts". Notably, hypertrophic chondrocytes
may possess innate potential for plasticity, reentering the
cell cycle and differentiating into osteoblasts and other
types of mesenchymal cells in the marrow space. We
may be able to harness this unique plasticity for
therapeutic purposes, for a variety of skeletal
abnormalities and injuries. In this review, we discuss the
morphological and molecular properties of hypertrophic
chondrocytes, which carry out important functions
during skeletal growth and regeneration.
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Introduction

Chondrocyte hypertrophy is a process by which cells
undergo a 10 to 20-fold enlargement due to rapid
volumetric increases and distinct metabolic and
molecular changes. This process facilitates sustained
endochondral ossification and plays an instrumental role
in the explosive longitudinal bone growth observed
among diverse mammalian species. Historically,
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hypertrophic chondrocytes have been considered as the
terminal state of growth plate chondrocytes resulting in
degenerative maturation, denoted by cell cycle exit,
nuclear condensation and apoptosis (Bonucci et al.,
2020). Yet, there is evidence that hypertrophic
chondrocytes undergo “transdifferentiation” and directly
become osteoblasts at the primary spongiosa (Yang et
al., 2014a,b; Zhou et al., 2014; Park et al., 2015; Tsang
et al., 2015; Hu et al., 2017). Thus, the “terminal” state
of hypertrophic chondrocytes should be more accurately
described as a “transient” state, denoted by the ability to
be reprogrammed into an osteoblast-like state in
response to external stimuli. Additionally, hypertrophic
chondrocytes are a source of receptor activator of
nuclear factor kappa-Β ligand (RANKL) required to
induce osteoclastogenesis and formation of the marrow
space during endochondral ossification, and to maintain
the balance between bone resorption and formation
(Xiong et al., 2011). RANKL-mediated multinucleated
“chondroclasts” are highest within the cartilaginous
mineralized matrix of the hypertrophic zone (Odgren et
al., 2016). Hypertrophic chondrocytes also express
vascular endothelial growth factor (VEGF), a cytokine
that induces angiogenesis and vascularization of the
ossification center (Gerber, et al., 1999a; Harper and
Klagsbrun, 1999; Zelzer et al., 2004). Thus, hypertrophic
chondrocytes possess multifaceted roles to orchestrate
endochondral ossification, beyond what was initially
described as the terminal state of growth plate
chondrocytes that are destined to apoptose. Here, we
discuss the morphological properties of hypertrophic
chondrocytes, as well as the molecular mechanisms

underlying their diverse functions in skeletal
development, growth and regeneration (Fig. 1).
The growth plate: The fountain of bone growth

Hypertrophic chondrocytes are the descendants of
chondrocytes in the resting zone of the growth plate. The
growth plate is organized into three distinct layers
classified by cell morphology, function and molecular
signature (Hallett et al., 2019). At the top, resting
chondrocytes possess stem-like properties associated
with infrequent cell division and the ability to feed their
daughter cells into the adjacent proliferating zone. The
notion that the resting zone houses a population of stem
cells was first postulated by autotransplantation
experiments in rabbits (Abad et al., 2002) and
subsequently by in vivo clonal analyses (Newton et al.,
2019) and lineage-tracing studies in mice (Mizuhashi et
al., 2018). The resting zone is maintained through the
parathyroid hormone-related protein (PTHrP)-Indian
Hedgehog (Ihh) feedback loop, which directs the
organization and activity of the growth plate
(Kronenberg, 2003). The resting zone has two functions
dictating chondrocyte hypertrophy: (1) to provide a
source of growth plate chondrocytes; (2) to coordinate
chondrocyte differentiation into proliferative and
hypertrophic cells in a non-cell autonomous manner.

Below the resting zone, proliferating chondrocytes
organize vertically into columns. Once proliferative
chondrocytes exhaust their mitotic capabilities, they
differentiate into pre-hypertrophic chondrocytes and
express Ihh. Through PTHrP–Ihh feedback regulation,
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Fig. 1. Multifactorial roles of hypertrophic chondrocytes and their molecular regulation. A. Magnified graphical representation of growth plate structure
and morphology. B. Enhanced cartoon of pre-hypertrophic and hypertrophic zones and primary spongiosa. Volumetric swelling due to increased
synthesis of intracellular organelles and cytoplasmic water intake facilitates progressive hypertrophic chondrocyte enlargement. GH, IGF-1, Sox9,
BMP2, HIF1α and FGFRs regulate chondrocyte hypertrophy, swelling, metabolism and apoptosis. Col10 is a marker for hypertrophic chondrocytes.
Runx2 and Sox9 are required for transdifferentiation of hypertrophic chondrocytes into osteoblasts.



IHH secreted by pre-hypertrophic cells functions in a
paracrine manner to stimulate mitosis of adjacent
chondrocytes in the proliferating layer, thus regulating
the rate of hypertrophy (Lanske et al., 1996; Vortkamp et
al., 1996). Further, pre-hypertrophic chondrocytes
undergo rapid volumetric increases due to cell swelling
and differentiate into hypertrophic chondrocytes.
Hypertrophic chondrocytes: morphological changes
to apoptosis or transdifferentiation

Hypertrophic chondrocytes: Morphological trans-
formation

Hypertrophic chondrocytes are the only bone cells
that undergo multiple phases of volumetric increase due
to hydration-induced cell swelling (Fig. 2). Two classical
theories for bone growth exist: (1) it is the result of
mitotic activities of proliferating chondrocytes, or (2) it
is the result of their cell synthetic activities, including
increases in cell volume and height (Hunziker and
Schenk, 1989). Early studies indicated that hypertrophic

chondrocyte enlargement most significantly contributes
to longitudinal bone growth (Hunziker et al., 1987),
denoted by increases in absolute volume of the cellular
matrix, Golgi apparatus, endoplasmic reticulum (ER)
and mitochondria and an 8-fold increase in cytoplasmic
water intake (Buckwalter et al., 1986). During
chondrocyte hypertrophy, cell volume and height
increase linearly, until the cell occupies its greatest
volumetric state. This may also be the result of increased
synthesis of ultrastructural components, such as
hyaluronic acid and proteoglycans (Farnum et al., 1984). 

Recently, diffraction phase microscopy was utilized
to show that mammalian chondrocytes undergo three
phases of volumetric increase due to swelling versus dry
mass production (Cooper et al., 2013). “Dry mass” is
defined as the total amount of solid substances in a cell
(Ginzberg et al., 2015). During Phase 1, there is a 3-fold
increase in dry mass and fluid uptake, suggesting that
intracellular components of chondrocytes rapidly
accumulate. Yet, during Phases 2 and 3, there are 2- and
4-fold increases in dry mass and fluid uptake,
respectively, leading to stabilization of dry mass density.
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Fig. 2. Morphological variation of hypertrophic chondrocytes. Representative differential interference contrast (DIC) (A, B) and hematoxylin and eosin
staining (C, D) of the growth plate at postnatal day 36 in a C57BL/6 mouse. Magnified images (B, D) denote cellular swelling and size variation of
hypertrophic chondrocytes as they move towards the primary spongiosa. RZ: resting zone, PZ: proliferating zone, PHZ: pre-hypertrophic zone, HZ:
hypertrophic zone, PS: primary spongiosa. Scale bars: 100 µM.



This was confirmed by 3D dry mass density index
mapping using tomographic phase microscopy in small
high-density and large low-density cells. Large
chondrocytes had 60% less dry mass density in the
cytoplasm. Using an independent conditional knockout
study in the hindlimb, the authors demonstrated that
Phase 3 entry is regulated by insulin-like growth factor 1
(IGF-1). Through phases 1-3, hypertrophic chondrocytes
increase their volume 10- to 20-fold. Therefore,
hypertrophic cell size is not limited due to physical
constraint but rather adaptive regulation within its
environment. Thus, swelling facilitates hypertrophic cell
enlargement while minimizing energetic cost. These
studies shed light on the cellular characteristics enabling
hypertrophic chondrocyte swelling.
Chondrocyte apoptosis: terminal differentiation followed
by cell death

A group of hypertrophic chondrocytes undergoes
apoptosis, as defined by physiological cell death due to
sporadic or programmed cellular events leading to
cytoplasmic shrinkage and maintenance of membrane
integrity (Nagata, 2018). Cell cycle checkpoint proteins,
p53 and Caspase proteases, play significant roles in the
regulation of apoptosis (Galluzzi et al., 2018). In the
articular surface, chondrocyte apoptosis is associated
with degenerative musculoskeletal diseases, such as
osteoarthritis (Hwang and Kim, 2015). Further, external
inorganic phosphate ions are released during
hydroxyapatite resorption and induce apoptosis of
hypertrophic chondrocytes in vitro via nitrosative stress
(Mansfield et al., 2001). Thus, hypertrophic chondrocyte
apoptosis may be mediated by extrinsic factors.

Apoptosis of hypertrophic chondrocytes is also
intrinsically regulated. When cultured with Caspase
inhibitors, hypertrophic chondrocytes fail to undergo
apoptosis, but maintain ColX synthesis (Roach et al.,
2004). The morphological features of chondrocyte
apoptosis differ from traditional definition, due to a lack
of apoptotic bodies within the lacunae (Roach and
Clarke, 2000). Observations of chick and horse terminal
hypertrophic chondrocytes noted these cells are
“paralyzed” or “dark”, denoted by digestions of
organelles within enclosed “islands” formed by
expanded or hydrated lumens of ER or vacuoles,
respectively (Roach et al., 1999; Ahmed et al., 2007).
Only a fraction of hypertrophic chondrocytes is labeled
by terminal deoxynucleotidyl transferase dUTP nick end
labeling (TUNEL), thus, non-labeled cells with
morphologically distinct DNA breaks may undergo
active gene transcription (Aizawa et al., 1997; Ohyama
et al., 1997). Due to the morphological and biochemical
differences between classical versus chondrocyte
apoptosis, “chondroptosis” has been proposed as an
alternative method by which hypertrophic chondrocytes
undergo combined apoptotic and autophagic processes
(Roach et al., 2004; Luo et al., 2019).

A recent study has assessed morphometric
parameters for classifying apoptotic hypertrophic
chondrocytes, with contradictory findings (Pazzaglia et
al., 2020). Using transmission electron microscopy, the
authors found no evidence for expanded cytoplasm
containing increased mitochondria, ribosomes, ER or
Golgi apparatus in hypertrophic chondrocytes. Rather,
these cells possess morphological properties similar to
terminally differentiated hypertrophic cells, denoted by
nuclear fragmentation and chromatin disappearance.
Below the vascular invasion front, macrophages remove
the degraded material produced by “hypertrophic
ghosts”. These cells have been described during
secondary necrosis in hypertrophic chondrocytes in
response to metabolic inhibition (Pazzaglia and Congiu,
2013). Thus, there exist discrepancies in the
interpretation of chondroptosis, both in terms of
morphology and frequency of apoptosis-like events.
Resultantly, there is a need to establish quantitative
metrics and biochemical assays to accurately define
hypertrophic chondrocyte state during this transition.
Hypertrophic chondrocyte transdifferentiation: the bony
dilemma

Death is not the only fate of hypertrophic
chondrocytes. For centuries, the idea that cells within a
committed lineage can undergo alternative fates has been
suggested. One example of this is transdifferentation, or
the conversion of one differentiated cell type into
another due to intrinsic or extrinsic factors (Merrell and
Stanger, 2016). 

In endochondral bones, early analyses of mouse and
rat growth plates suggest that hypertrophic chondrocytes
take on multiple cellular fates: apoptosis or
transdifferentiation into osteoblasts (Farnum et al.,
1990). Additional early investigations showed that
hypertrophic chondrocytes derived from murine rib
explants or bone rudiments are metabolically active,
denoted by incorporation of [3H] thymidine (Crelin and
Koch, 1967). EdU-labeling morphometric studies by
Roach suggest similar results and postulates that
terminally differentiated hypertrophic chondrocytes re-
enter the cell cycle and differentiate into osteoblasts at
the ossification front (Erenpreisa and Roach, 1996).
Further, hypertrophic chondrocytes can undergo an
osteogenic fate in response to extrinsic factors from the
bone microenvironment, such as gradients of signaling
molecules and high concentrations of peptides, ions and
glycans (Ishizeki et al., 1996; Bianco et al., 1998; Zerega
et al., 1999). These studies provided evidence that not all
hypertrophic chondrocytes are destined to die and may
have the potential to transdifferentiate into osteoblasts
(Aghajanian and Mohan, 2018; Wolff and Hartmann,
2019; Jing et al., 2020). Yet, further investigation into
the molecular and morphological changes of
hypertrophic cells are required to better define
chondrocyte-to-osteoblast transdifferentiation.
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Hypertrophic chondrocytes as a supporter for
chondroclasts

Hypertrophic chondrocytes are closely intertwined
with unique matrix-resorbing cells, “chondroclasts”.
Chondroclasts are a subset of osteoclasts dedicated to
resorbing mineralized matrix in the hypertrophic zone
(Knowles et al., 2012; Odgren et al., 2016).
Chondroclasts are morphologically similar to
osteoclasts, denoted by multinucleation, polarization and
“ruffled bordered” membranes (Feher, 2017).
Chondroclasts have been observed in the hyaline
cartilage erosion area surrounding the knee joint in
patients with osteoarthritis (Bromley and Woolley,
1984). Chondroclasts regulate osteogenic-angiogenic
coupling by degrading extracellular matrix (ECM) in the
hypertrophic zone, thus enhancing bioavailability of
MMP-9 and VEGF in the ossification center (Vu et al.,
1998; Gerber et al., 1999b). Chondroclasts share similar
transcriptomic profiles with osteoclasts (Khan et al.,
2020), but possess higher and lower levels of
intracellular and extracellular Tartrate-Resistant Acid
Phosphatase (TRAP), respectively (Nordahl et al., 1998).
Similar genetic perturbations reduce osteoclasts and
chondroclasts in the hypertrophic zone (Odgren et al.,
2003). Chondroclasts regulate osteoclastic-angiogenic
coupling in the ossification center, as terminal
differentiation of hypertrophic chondrocytes coincides
with chondroclast-mediated resorption of mineralized
matrix and vascular invasion (Farnum and Wilsman,
1989; Lewinson and Silbermann, 1992). Thus,
chondroclasts, a unique osteoclast subtype, resorb
calcified hypertrophic cartilage, thereby maintaining
balance between matrix deposition and resorption in the
ossification center adjacent to the hypertrophic zone.
New insights into the molecular regulation of
hypertrophic chondrocytes

Chondrocyte hypertrophy is regulated by several
major signaling pathways. Here, we discuss regulatory
pathways that direct chondrocyte hypertrophy, including
HIF1-α, GH, IGF-1, Ihh, BMPs, Sox9, Runx2 and
FGFRs (Fig. 1).
Metabolic regulation of hypertrophic chondrocytes by
HIF1-α signaling

Chondrocytes adapt to hypoxic environments by
shifting metabolic catabolysis to anaerobic/glycolytic
modes (Shapiro and Srinivas, 2007). The Crabtree effect
allows cells in avascular environments with high glucose
content to decrease O2 consumption through oxidative
phosphorylation while maintaining low ATP production
through the Pasteur effect (Hochachka and Lutz, 2001).
Hypoxia inducible factor 1-alpha (HIF1-α), a
transcription factor that regulates genes involved in
glucose transport and the Pasteur effect in mammalian
cells, is expressed by hypertrophic chondrocytes and is a

survival factor for hypoxic chondrocytes by elevating
expression of SRY-Box transcription factor 9 (Sox9) and
glycolytic enzymes in vivo (Semenza, 2000). HIF1-α
knockout mice display hypo-cellularization in the center
of the hypertrophic zone associated with disorganization
at the chondro-osseous junction (Pfander et al., 2003;
Amarilio et al., 2007). Therefore, HIF1-α signaling
uniquely regulates metabolism of hypoxic hypertrophic
chondrocytes.
GH and IGF-1: Direct regulators of chondrocyte
hypertrophy

Two important regulators of chondrocyte
hypertrophy are growth hormone (GH) and IGF-1.
Subcutaneous administration of GH and IGF-1 into rats
and rabbits, respectively, stimulates [3H] thymidine
incorporation into hypertrophic chondrocytes, denoting
their metabolic responsiveness following GH and IGF-1
treatment (List et al., 2019). GH treatment also
stimulates growth plate elongation and restores Igf1
mRNA levels in the hypertrophic zone of
hypophysectomized rats, indicating that GH regulates
IGF-1 expression in the growth plate (Racine and Serrat,
2020). GH-deficient mice also have decreased body
length compared to controls in a sex-independent
manner (Alba and Salvatori, 2004).

IGF-1 regulates endochondral bone growth by
promoting chondrocyte proliferation and hypertrophy
(Yakar et al., 2018). IGF-1 is one of the major hormones
required for skeletal growth and is used to treat pediatric
skeletal disorders, such as limb-length discrepancy and
short stature (Giustina et al., 2008). Igf1
haploinsufficient mice are 10–20% smaller than controls
due to decreased organ, muscle and bone mass and
serum IGF-1 (Powell-Braxton et al., 1993). Igf1
knockout mice display a 35% reduction in long bone
growth due to specific reductions in the linear length of
hypertrophic chondrocytes, suggesting that IGF-1
regulates chondrocyte hypertrophy (Wang et al., 1999a). 

IGF-1 receptor (Igf1r) deletion in mice causes
delayed endochondral ossification, abnormal
chondrocyte proliferation and differentiation and
dwarfism (Bikle et al., 2001). Deletion of Igf1r in type II
collagen alpha 1 chain (Col2a1) expressing
chondrocytes caused dwarfism, expansion of the
proliferating zone and increased apoptosis of
hypertrophic chondrocytes (Wang et al., 2011). IGF1R
signaling interacts with the PTHrP-Ihh feedback loop; in
which PTHrP prolongs chondrocyte proliferation and
delays their hypertrophic differentiation, thereby
delaying IHH expression (Vortkamp et al., 1996). Thus,
IGF-1 is necessary for skeletal growth and development
due to its role as a regulator of chondrocyte hypertrophy.
Pre-hypertrophic IHH as an indirect regulator of
chondrocyte hypertrophy

IHH regulates chondrocyte differentiation and
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skeletal morphogenesis (Lanske et al., 1996; Vortkamp
et al., 1996; Chung et al., 1998; St-Jacques et al., 1999;
Kobayashi et al., 2002, 2005). IHH expressed by pre-
hypertrophic chondrocytes works in a concerted manner
with PTHrP expressed by resting chondrocytes to
maintain growth plate structure and longitudinal bone
growth (Kronenberg, 2003). Ihh-deficient mice lack
proper chondrocyte differentiation and mineralization
due to delayed expression of type 10 collagen alpha 1
(Col10a1), a marker of hypertrophic chondrocytes
(Linsenmayer et al., 1991; St-Jacques et al., 1999).
Activation of Hedgehog signaling via loss of Patched-1
(PTCH1) receptor causes delayed chondrocyte
hypertrophy (Mak et al., 2006). Thus, Ihh indirectly
regulates chondrocyte hypertrophy through interactions
with chondrocytes in the adjacent layers.
BMPs mediate chondrocyte hypertrophy via independent
and complimentary mechanisms

BMPs regulate chondrocyte hypertrophy both
directly and indirectly. BMP2 and BMP4 are expressed
in pre-hypertrophic and hypertrophic chondrocytes
(Nilsson et al., 2007) and stimulate chondrocyte
hypertrophy in limb explants (de Luca et al., 2001;
Hatakeyama et al., 2004). In vitro administration of
BMP2 in cultured chondrocytes and limb explants
targets hypertrophic chondrocytes, resulting in an
increase in Rankl expression in ColX+ cells as well as
Ihh and Col10a1 expression in the pre-hypertrophic and
hypertrophic zones, respectively (Valcourt et al., 2002;
Zhou et al., 2016). Canonical BMP signaling directly
regulates chondrocyte hypertrophy, as BMP2
administration inhibits chondrocyte hypertrophy via
Smad1/5/8 (Valcourt et al., 2002; Canalis et al., 2003).
Col2a1-cre-specific deletion of BMP2 causes shortened
long bones due to delayed formation of the hypertrophic
zone (Shu et al., 2011). BMP2 induces Runx2 expression
at the transcriptional and post-transcriptional levels via
phosphorylation of CDK4, which inhibits chondrocyte
hypertrophy via Runx2 degradation (Zhang et al., 2009).
This is important, since Runx2 activation is necessary
for hypertrophic chondrocyte differentiation (Ding et al.,
2012) and transdifferentiation (Qin et al., 2020).
Deletion of BMP signaling members, Smad6 and
Bmpr1a/b, leads to chondrodysplasia due to premature
hypertrophic differentiation and smaller hypertrophic
zones (Yoon et al., 2005). Thus, BMP2 and members of
the canonical BMP signaling pathway regulate
chondrocyte hypertrophy through Runx2.
Sox9 downregulation induces hypertrophic chondrocyte
transdifferentiation

Sox9 activation is required for mesenchymal
condensation of the cartilaginous anlage during fetal
development (Lefebvre and Smits, 2005). Sox9 is
expressed in chondroprogenitor cells and becomes
isolated to resting, proliferating and pre-hypertrophic

chondrocytes postnatally (Zhao et al., 1997). Sox9
knockout mice have reduced chondrocyte hypertrophy
due to absence of Col10a1 expression in the
hypertrophic zone (Ikegami et al., 2011; Dy et al., 2012).
Sox9 activates Col10a1 transcription in hypertrophic
chondrocytes by binding to its promoter cooperatively
with myocyte enhancer factor 2C (Mef2c) (Dy et al.,
2012). Thus, Sox9-mediated Col10a1 transcription is
required for chondrocyte hypertrophy. Sox9
misexpression in Col10a1+ hypertrophic chondrocytes
results in reduced bone marrow formation at P0, reduced
bone growth and deficiencies in Vegfa, Mmp13, Rankl
and Opn expression in hypertrophic cells (Hattori et al.,
2010). Further, a recent study has demonstrated that
persistent Sox9 expression in the growth plate causes
inhibition of chondrocyte-to-osteoblast transdifferentia-
tion in trabecular bone associated with decreased
expression of Mmp9, Mmp13, Sp7 and Col1a1 (Lui et
al., 2019). Thus, downregulation of Sox9 in hypertrophic
chondrocytes is necessary for vascular invasion and
degradation of calcified hypertrophic cartilage in the
growth plate in addition to transdifferentiation of
hypertrophic chondrocytes into osteoblasts.

According to a recent study, Sox9 maintains growth
plate architecture and safeguards the lineage fates of
chondrocytes by preventing their dedifferentiation into
mesenchymal progenitors while facilitating hypertrophic
chondrocyte transdifferentiation into osteoblasts (Haseeb
et al., 2021). Using an Acan-creERT2; ROSA26RtdTomato;
Sox9f/f, chondrocyte-specific conditional knockout
mouse, single cell RNA-sequencing analysis of
chondrocytes extracted from control and mutant distal
tibial and femur epiphyses discovered that
transcriptomic profiles of mutant chondrocytes bypass
late proliferative, pre-hypertrophic and hypertrophic
stages, becoming prematurely terminally differentiated
or osteoblast-like cells. These transcriptomic data were
confirmed by immunohistochemical analyses, denoted
by increased expression of terminal hypertrophic
chondrocytes markers, Col10a1 and matrix GLA protein
(Mgp) and osteoblast markers, Sp7, Col1a1 and Bglap at
the transition zone of Sox9-deficient growth plates.
Thus, Sox9 expression in the postnatal growth plate
regulates transdifferentiation of hypertrophic
chondrocytes to osteoblast-like cells.
Runx-related genes are required for chondrocyte
hypertrophy

The Runx transcription factors play important roles
in chondrocyte hypertrophy. During fetal development,
Runx1 is expressed by early mesenchymal progenitor
cells in condensations (Yamashiro et al., 2002; Smith et
al., 2005). Runx2/3 are expressed in pre-hypertrophic
and hypertrophic chondrocytes, suggesting direct
functional roles of Runx2/3 in chondrocyte hypertrophy
(Inada et al., 1999a; Kim et al., 1999; Sato et al., 2008).
Runx2 regulates osteoblast differentiation in the early
stages of endochondral bone formation (Komori et al.,

1026
Hypertrophic chondrocytes: death or survival?



1997; Otto et al., 1997). Genetic ablation or expression
of dominant negative RUNX2 leads to reduced
chondrocyte hypertrophy (Inada et al., 1999b; Ueta et
al., 2001). RUNX2 transcriptionally regulates genes
critical for vascular invasion and ECM synthesis,
including VEGF (Zelzer et al., 2001) and MMP13,
respectively (Selvamurugan et al., 2000). Runx2/Runx3
double knockout mice have loss of chondrocyte
maturation due to failed formation of the hypertrophic
zone and decreased Col10a1 expression (Yoshida et al.,
2004). Conversely, Runx2 overexpression in
chondrocytes causes premature chondrocyte hypertrophy
and early induction of ColX expression in vitro
(Enomoto et al., 2000) and in vivo (Takeda et al., 2001).
Further, Runx2 regulates ColX transcription in
hypertrophic chondrocytes (Drissi et al., 2003; Zheng et
al., 2003). 

A recent study shows that hypertrophic chondrocyte-
specific conditional knockout of Runx2 (Col10a1-cre;
Runx2f/f) causes decreased expression of Vegfa in
hypertrophic chondrocytes, and Mmp13, Col1a1 in the
primary spongiosa, associated with increased apoptosis
and failure of chondrocyte-to-osteoblast transdifferentia-
tion (Qin et al., 2020). Using a Col10a1-cre; Rosa26-
mTFP1; Runx2f/f; 2.3Col1a1-tdTomato compound
mutant mouse, the authors demonstrated that
hypertrophic chondrocyte-derived trabecular and
endosteal osteoblasts were significantly reduced or
absent in mutants at embryonic day 17.5 (E17.5), P0 and
1-week. Primary spongiosa formation was delayed in
mutants, indicated by decreased expression of bone
sialoprotein 2 and Col1a1, hypertrophic chondrocyte
and osteoblast markers, respectively, at E15.5. At birth,
spongiosa development and trabecular bone volume
were similar in wild-type and mutant mice. Thus, Runx2
is required for survival and transdifferentiation of
hypertrophic chondrocytes during fetal development.
Runx2, initially identified as a regulator of osteoblast
formation, also plays roles in chondrocyte hypertrophy,
transdifferentiation, vascular invasion and matrix
deposition in the hypertrophic zone.
FGFRs play dual roles in chondrocyte hypertrophy and
skeletal growth

Fibroblast growth factors receptors (Fgfr) play dual
roles in promoting or inhibiting chondrocyte
differentiation and endochondral bone growth. Fgfr1 and
Fgfr2 are initially expressed in the embryonic
perichondrium and become restricted to the hypertrophic
and resting zones, respectively (Delezoide et al., 1998;
Lazarus et al., 2007; Sheeba et al., 2010). Fgfr3 is
expressed after the pre-condensation stage in the
cartilage anlage and becomes isolated to proliferating
and pre-hypertrophic chondrocytes (Ornitz and Marie,
2015). FGFR1 overactivation in humans causes
appendicular skeletal deformities and dwarfism (White
et al., 2005), although a similar mutation in Fgfr1 in
mice had no effect on bone formation (Zhou et al.,

2000). Mesoderm-specific deletion of Fgfr1 (Dermo1-
cre; Fgfr1f/f) causes impaired chondrocyte hypertrophy
in fetal stages (Hung et al., 2007). During postnatal
development, chondrocyte-specific deletion of Fgfr1
(Col2a1-cre; Fgfr1f/f) causes hypertrophic zone
expansion associated with delayed degradative
maturation of hypertrophic chondrocytes (Jacob et al.,
2006). Further, FGFR1 signaling delays hypertrophic
differentiation of chondrocytes. Thus, Fgfr1 expression
is important for regulating chondrocyte hypertrophy
through unknown mechanisms. FGFR2 functions in
resting and proliferating chondrocytes in a redundant
manner; Dermo1-cre; Fgfr2f/f mice display normal
chondrocyte proliferation and growth plate morphology
(Yu et al., 2003).

During fetal development, FGFR3 activates
chondrocyte proliferation. By early postnatal
development, FGFR3 inhibits chondrocyte proliferation
and hypertrophic differentiation (Iwata et al., 2000).
Activating mutations in FGFR3 in humans and mice
cause impaired chondrocyte proliferation and premature
hypertrophy, leading to achondroplasia (Wang et al.,
1999b). Conversely, Fgfr3 deficient mice present
increased hypertrophic zone linear length and prolonged
endochondral ossification (Colvin et al., 1996). FGFR3-
mediated inhibition of chondrocyte proliferation and
hypertrophy are regulated by STAT1-p21 and MAPK-
ERK signaling, respectively (Su et al., 1997; Murakami
et al., 2004; Raucci et al., 2004; de Frutos et al., 2007).
FGFR3-mediated suppression of Sox9 decreases pre-
hypertrophic chondrocyte differentiation (Zhou et al.,
2015). Mesenchymal cell-specific overactivation of
FGFR3 (Prrx1-cre; Fgfr3Y637C/+) causes failure of
chondrocyte-to-osteoblast transdifferentiation in a tibial
fracture healing model, resulting in persistent
fibrocartilages at the callus (Julien et al., 2020). In
mutants, Col10a1+ cells fail to become osteoblasts,
denoted by decreased vascularization and chondrocyte
proliferation at the callus. The fracture defect in mutants
is due to an inability for periosteal cells to differentiate
into hypertrophic chondrocytes, causing an intrinsic
reduction in transdifferentiation. Notably, when mutant-
derived periosteal cells were transplanted to wild-type
hosts, transdifferentiation occurred (Julien et al., 2020).
Thus, Fgfr3 is important for chondrocyte proliferation,
hypertrophy and transdifferentiation during skeletal
regeneration. Yet, Fgfr3’s role during physiologic
hypertrophic chondrocyte-to-osteoblast transdifferentia-
tion remains unknown.
Hypertrophic chondrocytes regulate osteogenic-
angiogenic and osteogenic-osteoclastic coupling

Hypertrophic chondrocytes as an important regulator of
osteoclastogenesis 

Hypertrophic chondrocytes express RANKL and
regulate osteoclastogenesis. Coupling between bone-
forming osteoblasts and bone-resorbing osteoclasts
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maintains skeletal homeostasis (Sims and Martin, 2014).
RANKL is expressed by cells of the osteoblast lineage
and facilitates osteoclast formation (Kong et al., 1999;
Sobacchi et al., 2007). It has been known for decades
that osteoblasts regulate osteoclastogenesis in vitro
(Rodan and Martin, 1982; Takahashi et al., 1988). Yet,
recent studies suggest that matrix-embedded osteocytes,
not osteoblasts, are the primary source of RANKL
(O’Brien, 2010). Ablation of osteoblasts in vivo and in
vitro has no impact on Rankl expression or osteoclast
number (Corral et al., 1998; Galli et al., 2009). Anabolic
glucocorticoid administration in mice reduces
osteoblasts and pre-osteoblasts, but not osteocytes
(Weinstein et al., 1998, 2002). Conditional deletion of
RANKL in limb bud mesenchyme causes significant
reduction of osteoclasts below the hypertrophic zone
(Xiong et al., 2011). In this study, conditional ablation of
RANKL in osteoblasts (Osteocalcin-cre [Ocn-cre;
Ranklf/f]; Osterix-cre [Osx-cre; Ranklf/f]) causes loss of
Rankl expression in the hypertrophic zone. Further,
Col10a1-cre; Ranklf/f, Osx-cre; Ranklf/f and Ocn-cre;
Ranklf/f knockout mice all prevented calcified cartilage
resorption by reducing RANKL expression in
hypertrophic cells. Osteocytes embedded in the
trabecular lacunae highly express RANKL (Nakashima
et al., 2011). Osteocyte-specific deletion of RANKL
(Dmp1-cre; Ranklf/f) causes decreased osteoclast number
and increased trabecular bone volume, leading to
osteopetrosis. Therefore, RANKL produced by
hypertrophic chondrocytes and osteocytes is essential for
osteoclastogenesis.
Hypertrophic chondrocytes as a central regulator of
osteogenic-angiogenic coupling

Vascularization of the ossification center is an
essential process to establish the marrow cavity.
Capillary invasion into the cartilage template is followed
by ossification. Growth factors VEGF, epidermal growth
factor (EGF) and platelet-derived growth factor (PDGF)
are expressed in the growth plate and regulate
vascularization (Hu and Olsen, 2016). VEGF expressed
by hypertrophic chondrocytes induces vascularization of
the ossification center by recruiting blood vessels (Risau,
1995; Carmeliet et al., 1996; Ferrara et al., 1996; Gerber
et al., 1999a). Inhibition of VEGF protein by chimeric
VEGF–IgG decreases femur length and enhances
Col10a1 expression in the hypertrophic zone, associated
with disorganization of metaphyseal blood vessels
(Gerber et al., 1999b). VEGF-mediated metaphyseal
vasculogenesis triggers apoptosis of hypertrophic
chondrocytes (Gerber et al., 1999b; Harper and
Klagsbrun, 1999). Col2a1-cre-specific deletion of Vegfa
causes reduced cartilage formation and skeletal
mineralization, delayed vascularization of the
ossification center and removal of hypertrophic
chondrocytes (Zelzer et al., 2004). Thus, VEGF is
necessary for maintaining hypertrophic chondrocyte
survival.

VEGF-mediated osteogenic-angiogenic coupling
during skeletal growth has been extensively studied.
Functioning cooperatively with VEGF, matrix
metalloproteinase-9 (MMP-9), is expressed by
hypertrophic chondrocytes and degrades cartilaginous
ECM (Paiva and Granjeiro, 2017). Similar to the VEGF
inhibition phenotype (Gerber et al., 1999b), Mmp-9
knockout mice have an expanded hypertrophic zone (Vu
et al., 1998; Ortega et al., 2005) associated with reduced
chondrocyte apoptosis, vascularization and ossification.
Mmp9-deficient mice have impaired skeletal
regeneration, denoted by accumulation of hypertrophic
cartilage and delayed endochondral ossification during
healing (Colnot et al., 2003). This was confirmed by
analysis of Mmp-9-deficient growth plates, in which
Mmp13 expression was elevated in the expanded
hypertrophic zone (Kojima et al., 2013). Consistent with
others, this suggests a role for MMP-13 to compensate
for MMP-9 loss in hypertrophic cells to degrade ECM
(Wu et al., 2002; Ortega et al., 2010). MMP-13-mediated
ECM degradation of the hypertrophic zone also
coincides with apoptosis of hypertrophic chondrocytes
(Inada et al., 2004).

MMP-9-mediated ECM degradation increases
bioavailability of VEGF, resulting in the recruitment of
osteoclasts to the vascular front to facilitate ECM
remodeling and hypertrophic chondrocyte turnover.
Expansion of the hypertrophic zone and vascularization
of the ossification center in Mmp9 knockout mice are
partially rescued by exogenous VEGF (Ortega et al.,
2010). Thus, MMP9-driven resorption of the
hypertrophic zone is synergistically coupled to VEGF-
mediated vasculogenesis. Apoptosis of hypertrophic
chondrocytes in Mmp9-deficient mice is observed within
the center of the expanded hypertrophic zone (Vu et al.,
1998). Furthermore, Mmp9-deficient hypertrophic
chondrocytes delay release of pro-angiogenic factors,
indicating that MMP-9-driven osteogenic-angiogenic
coupling in the hypertrophic zone regulates apoptosis of
hypertrophic chondrocytes, ECM degradation and
vasculogenesis of the metaphysis.
Alternative osteogenic cell fates of hypertrophic
chondrocytes

Col10a1-mCherry+ cells are located in the metaphyseal
marrow space

Type X collagen (ColX) is a short chain collagen
that forms aggregates in the territorial matrix of
hypertrophic chondrocytes (Schmid and Linsenmayer,
1990; Shen, 2005). Col10a1-deficient mice are viable
and undergo normal bone formation (Rosati et al., 1994).
Col10a1 is expressed in hypertrophic chondrocytes,
according to early immunohistochemical and molecular
analyses (Schmid and Linsenmayer, 1985; Iyama et al.,
1991; Gu et al., 2014) and mouse reporter models
(Gebhard et al., 2008; Kong et al., 1993). Analysis of
Col10a1-mCherry knock-in reporter mice revealed
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Col10a1-cre: is it the right tool to study hypertrophic
chondrocyte transdifferentiation?

In vivo lineage-tracing studies have demonstrated
that Col10+ chondrocytes may transdifferentiate into
osteoblasts and osteocytes in the trabecular and cortical
bone (Yang et al., 2014a,b; Zhou et al., 2014). In a study
by Zhou et al., fetal-derived Col10a1+ hypertrophic
chondrocytes expressed Col1a1 at the primary spongiosa
and trabecular and endosteal surfaces during early and
late postnatal development (Zhou et al., 2014). In a
tandem analysis, a Col10a1int2-cre; ROSAEYFP reporter
mouse shows that Col10a1+ hypertrophic chondrocytes
invade into the metaphysis and trabecular bone and
express osteoblast markers Col1a1, Ocn and Bsp and
eventually became matrix-embedded osteocytes in the
diaphysis at P20. (Yang et al., 2014b). Consistent with
early reports suggesting the metabolic capability of
hypertrophic chondrocytes (Crelin and Koch, 1967), the
authors found that Col10a1-cre+ cells uptake BrdU in
the metaphysis and are mitotically active. Further,
Col10a1int2-cre; ROSAEYFP-marked cells became with
perilipin+ adipocytes.

An additional study using Col10a1-cre;
ROSARYFP/LacZ models demonstrated that descendants of
Col10a1+ hypertrophic chondrocytes contribute to
osteoblast formation at the primary spongiosa and on the
trabecular and endosteal surfaces (Yang et al., 2014a).
Col10a1-cre; RosaLacZ+ cells became Col1a1+ endosteal
osteoblasts at P10 and at the chondro-osseous junction in
cortical bone at 3 months, suggesting that Col10a1+
hypertrophic chondrocytes may commit to an osteogenic
lineage in adulthood. In the same study, fetal-derived
Col10a1-creERt; RosaLacZ-marked hypertrophic
chondrocytes gave rise to immature Osx+ pre-osteoblasts
at the primary spongiosa, Col1a1+ metaphyseal
osteoblasts and Sclerostin+ osteocytes in the trabecular
bone. Yet, these studies assess chondrocyte-to-osteoblast
‘transdifferentiation’ only in early postnatal time points,
and therefore did not determine if conversion of
Col10a1+ hypertrophic cells to osteoblasts also occur in
adulthood. These studies suggest that Col10a1+ lineage
traced hypertrophic chondrocytes contribute to the
osteogenic pool during early postnatal endochondral
bone growth.
Hypertrophic chondrocytes reenter the cell cycle and
become osteoblast-like during skeletal regeneration

More recently, hypertrophic chondrocytes were
confirmed to reenter the cell cycle, marked by BrdU
incorporation and Ki67 expression and undergo a pro-
osteogenic fate during skeletal regeneration using
combinatorial histomorphometric and gene expression
analyses (Hu et al., 2017). In this study, as chondrocytes
in the transition zone become osteoblast-like cells, they
lose expression of chondrogenic signatures, Sox9,
Col2a1 and Col10a1, while beginning to express
Col1a1. In addition to becoming osteoblast-like,
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Col10a1+ cells in the metaphyseal marrow space, in
addition to in the pre-hypertrophic and hypertrophic
zones (Maye et al., 2011). Yet, endogenous Col10a1
mRNA is most abundant in pre-hypertrophic and
hypertrophic chondrocytes. Thus, Col10a1-mCherry+
cells in the marrow space may represent a population of
apoptosis-evading chondrocytes or hypertrophic cells
that have transdifferentiated. 

Analysis of Col10a1-mCherry; Col3.6-Topaz;
Col2.3-Emerald triple transgenic mice revealed distinct
reporter activities within the growth plate and trabecular
bone: Col10a1-mCherry+ cells were found in the
hypertrophic zone and surrounding trabecular
osteoblasts, while Col2.3-Emerald+ cells were localized
to the growth plate and Col3.6-Topaz+ cells were
present in the trabecular bone. Interestingly, Col10a1-
mCherry+ trabecular osteoblasts do not overlap with
Col3.6-Topaz+ osteoblasts. Thus, Maye et al. conclude
“no evidence of chondrocyte to osteoblast
transdifferentiation” (Maye et al., 2011), although their
analyses were limited to late embryonic and early
postnatal stages therefore not addressing the possibility
that Col10a1+ cells may become osteoblast-like cells
during late postnatal development. Additionally, others
state that “mCherry expression fades before the onset of
osteogenesis and expression of Col1a1-EGFP, and the
fate of the [hypertrophic chondrocyte] cannot be traced”
(Tsang et al., 2015). Could a subset of Col10a1-
mCherry+ cells represent a unique osteo-
chondroprogenitor population that contributes to the
trabecular compartment? To address this cell fate
question, advances in lineage-tracing technology have
facilitated the spatiotemporal analysis of hypertrophic
chondrocyte cell fates through the use of cre-loxP
system (Vanhorn and Morris, 2020).
Lineage-tracing findings from pan-chondrocyte Col2a1-
crER and Aggrecan-creER lines

Yang et al. demonstrated that Col2a1+ growth plate
chondrocytes contributed to Col1a1+ osteoblasts in the
metaphysis, using a Col2a1-creER; ROSAEYFP lineage-
tracing model (Yang et al., 2014a). Analysis of Col2a1-
creER; ROSAEYFP and Col2a1-creER; ROSAConfetti
single and multicolor clonal lineage reporter mice
demonstrated that Col2a1+ chondrocytes give rise to
metaphyseal osteoblasts at low frequencies (Yang et al.,
2014a). Yet, because Col2a1-creER labels all
chondrocyte subtypes in the growth plate, it is unknown
if Col2a1-creER-lineage-traced osteoblasts are derived
from hypertrophic cells or unidentified osteo-
chondroprogenitor populations at the primary spongiosa.
Additionally, analysis of a “chondrocyte-specific”
Aggrecan-creER (Acan-creER) lineage-tracing model
(Henry et al., 2009) discovers that Acan+ cells contribute
to osteoblasts at the primary spongiosa. This is also
observed during skeletal regeneration, as Acan-creER+
cells contribute to 2.3Col1a1-GFP+ osteoblasts at the
repair callus (Zhou et al., 2014). 



transition zone hypertrophic chondrocytes express
markers of cell pluripotency, Oct4, Sox2 and Nanog,
suggesting that hypertrophic cells may revert to a
pluripotent-like state during transdifferentiation into
osteoblasts. These findings denote unique morphological
and gene expression signatures of hypertrophic
chondrocytes in response to fracture healing.
Chondrocyte-derived osteoprogenitors become
osteoblasts

In a tandem analysis, these results were confirmed
using bacterial artificial chromosome (BAC)-generated
Col10-cre; ROSARYFP and Col10-cre; ROSALacZ reporter
models (Park et al., 2015). Col10+ chondrocytes overlap
with Col1a1+ and Ocn+ osteoblasts in the primary
ossification center during embryonic development and
later in the primary spongiosa, suggesting that these cells
may originate from Col10a1+ hypertrophic chondrocytes
in the growth plate. YFP+ trabecular cells isolated from
the spongiosa of femoral heads of Col10-cre; RosaRYFP
reporter mice were highly enriched for osteogenic
markers, Ocn, Osx, Col1a1 and Runx2 at levels similar
to cortical bone. According to flow cytometry analysis
of cultured Col10-cre; ROSARYFP-derived endosteal
osteoblasts at P7, 11% of these cells are YFP+. Thus, the
authors postulate that 11% of endochondral osteoblasts
are derived from hypertrophic chondrocytes that have
rapidly transdifferentiated into endosteal osteoblasts.
Further, a novel chondrocyte-derived osteoprogenitor
(CDOP) was identified using confocal microscopy,
characterized by small, condensed chondrocytes with
extensive cytoplasmic vascuolization at the bottom of
the hypertrophic zone. In culture, CDOPs express
Col2a1, Col10, Col1a1, Osx, are enriched for the stem
cell markers, Sca1, CD34, sox2 and c-myc and robustly
incorporate BrdU (Park et al., 2015). These lineage
tracing, morphometric and in vitro analyses suggest that
Col10a1+ chondrocytes may represent “stem-like” cells
that gives rise to pre-osteoblasts, osteoblasts and
osteocytes at embryonic and postnatal times. We have
also provided evidence of chondrocyte-to-osteoblast
“transdifferentiation” based on a series of in vivo
lineage-tracing experiments using a Pthrp-creER
transgenic line that is specific to chondrocytes in the
resting zone (Mizuhashi et al., 2018).
Lack of morphometric evidence for hypertrophic
chondrocyte transdifferentiation

Recently, however, a morphometric analysis of
rabbit tibial hypertrophic chondrocytes supports no
evidence of chondrocyte-to-osteoblast transdifferentia-
tion (Pazzaglia et al., 2020). The authors stipulate that in
order to constitute a transdifferentiation event,
hypertrophic chondrocytes must undergo: 1) a 10-fold
shrinkage of size, and 2) decreases in both number and
density when compared to metaphyseal osteoblasts at the
vascular invasion line. The latter observation suggests

the incidence of increased mitoses at the chondrocyte-to-
osteoblast transdifferentiation transition zone. The
authors continue to suggest that lineage-tracing analyses
of transdifferentiation (Yang et al., 2014b; Zhou et al.,
2014) fail to consider the possibility that “unstructured
substances of apoptotic chondrocytes were still present
until cleared by macrophages and that these [cells] could
account for the positive fluorescent staining observed in
those analyses” (Pazzaglia et al., 2020). They conclude
that, “distribution and density of hypertrophic
chondrocytes, macrophages and osteoblasts were
consistent with a committed function for each [cell type]
in the general layout of the growth plate”, based on their
morphometric analyses. 

Several questions remain regarding the fate of
hypertrophic chondrocytes, including: (1) How often do
descendants of Col10a1+ hypertrophic chondrocytes
persist in adulthood and give rise to osteoblasts and
osteocytes? (2) Are there unidentified osteo-
chondroprogenitor populations at the interface of
hypertrophic chondrocytes and newly formed bones? (3)
Which molecular signals allow hypertrophic
chondrocytes to alter their fate and differentiate into
osteoblasts during skeletal regeneration? These
outstanding questions represent future areas of
investigation into the elusive nature of hypertrophic
chondrocytes.
Conclusions

The ultimate cell fates of hypertrophic chondrocytes
remain largely elusive due to their transient nature.
Hypertrophic chondrocytes are the only skeletal cell type
capable of increasing its intracellular volume through
rapid water intake and increased metabolism due to
accumulation of mitochondria, the Golgi apparatus and
ER. Coupled with active proliferation of chondrocytes in
the preceding layer, rapid enlargement of hypertrophic
chondrocytes is a major driver of endochondral bone
growth. Historically, hypertrophic chondrocytes have
been considered as the terminal state of chondrocytes
prior to apoptosis. Even this concept is debated as
several varieties of “chondroptosis” denoted by
“paralyzed” or “dark” cytoplasmic aggregates have been
observed in hypertrophic chondrocytes. Hypertrophic
chondrocytes are critical regulators of osteogenic-
osteoclastic and osteogenic-angiogenic coupling
activities during skeletal development, growth and
regeneration. Lastly, the “terminal” state of hypertrophic
chondrocytes may actually be transient; denoted by their
ability to reenter the cell cycle and give rise to a newly
identified, “chondrocyte-derived osteoprogenitor”-like
cell, although details are not yet clear.

Chondrocyte-to-osteoblast transdifferentiation has
been proposed for over a century. Early reports of this
event are based on morphological characteristics, such as
nuclear condensation and cellular shrinkage. More
recent lineage-tracing experiments have substantially
advanced our understanding of individual fates of
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hypertrophic chondrocytes. Hypertrophic chondrocytes
represent a unique “terminally differentiated” cell type
capable of giving rise to new cell types. Further
investigations are required to unravel the molecular
regulation of chondrocyte-to-osteoblast trans-
differentiation under both physiological and pathological
conditions. Resultantly, it may be possible to harness the
amazingly diverse functions of hypertrophic
chondrocytes in order to more effectively treat patients
suffering from debilitating skeletal disorders, including
skeletal abnormalities, chondrodysplasias and skeletal
injuries.
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