Repository logo
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    New user? Click here to register.
Repository logo

Repositorio Institucional de la Universidad de Murcia

Repository logoRepository logo
  • Communities & Collections
  • All of DSpace
  • menu.section.collectors
  • menu.section.acerca
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    New user? Click here to register.
  1. Home
  2. Browse by Subject

Browsing by Subject "Subcommisural organ subfornical organ"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Open Access
    The circumventricular organs
    (Universidad de Murcia. Departamento de Biología Celular e Histología, 2017) Kaur, Charanjit; Ling, Eng Ang
    The circumventricular organs (CVOs) are midline structures located around the third and fourth ventricles that are characterized by a lack of blood-brain barrier. The pineal gland, median eminence, neurohypophysis and the subcommisural organ are classified as secretory, whereas the subfornical organ, area postrema and the organum vasculosum of the lamina terminalis as the sensory CVOs. Glial cells consisting of astrocytes and microglia/macrophages are present in all these organs. The pineal gland, neurohypophysis and the median eminence lack the presence of neurons that are present in the rest of the CVOs. Most of the CVOs are lined by ependymal cells except for the pineal and the neurohypophysis. Modified ependymal cells known as tanycytes are present in the ependymal lining. These organs are important sites for communication with the cerebrospinal fluid as well as between the brain and peripheral organs via blood-borne products as they lack the blood-brain barrier.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Accessibility
  • Send Feedback