Repository logo
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    New user? Click here to register.
Repository logo

Repositorio Institucional de la Universidad de Murcia

Repository logoRepository logo
  • Communities & Collections
  • All of DSpace
  • menu.section.collectors
  • menu.section.acerca
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    New user? Click here to register.
  1. Home
  2. Browse by Subject

Browsing by Subject "Serial section 3D Reconstruction"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Open Access
    A ridge-based framework for segmentation of 3D electron microscopy datasets
    (Elsevier, 2013-01) Martinez-Sanchez, Antonio; García, Inmaculada; Fernández, Jose-Jesús; Ingeniería de la Información y las Comunicaciones
    Three-dimensional (3D) electron microscopy (EM) has become a major player in structural cell biology as it enables the analysis of subcellular architecture at an unprecedented level of detail. Interpretation of the resulting 3D volumes strongly depends on segmentation, which consists in decomposing the volume into their structural components. The computational approaches proposed so far have not turned out to be of general applicability. Thus, manual segmentation still remains a prevalent method. Here, a new computational framework for segmentation of 3D EM datasets is introduced. It relies on detection and characterization of ridges (i.e. local maxima). The detected ridges are modelled as asymmetric Gaussian functions whose parameters constitute ridge descriptors. This local information is then used to cluster the ridges, which leads to the ultimate segmentation. In this work we focus on membranes and locally planar structures in general. The performance of the framework is illustrated with its application to a number of complex 3D datasets and a quantitative analysis.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Accessibility
  • Send Feedback