Repository logo
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    New user? Click here to register.
Repository logo

Repositorio Institucional de la Universidad de Murcia

Repository logoRepository logo
  • Communities & Collections
  • All of DSpace
  • menu.section.collectors
  • menu.section.acerca
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    New user? Click here to register.
  1. Home
  2. Browse by Subject

Browsing by Subject "MRI Image segmentation"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Embargo
    Application of YOLOv8 and a model based on vision transformers and UNet for LVNC diagnosis: advantages and limitations
    (Springer, 2025-04-25) De Haro, Salvador; González Férez, Pilar; García, José M.; Bernabé García, Gregorio; Ingeniería y Tecnología de Computadores
    Hypertrabeculation or left ventricular non-compaction (LVNC) is a cardiac condition that has recently been recognized. While several methods exist for accurately measuring the trabeculae in the ventricle, there is still no consensus within the medical community regarding the optimal approach. In previous work, we introduced DL-LVTQ, a tool based on a UNet convolutional neural network designed to quantify the trabeculae in the left ventricle. In this paper, we present an expanded dataset that includes new patients affected by a cardiomyopathy known as Titin, necessitating the retraining of the models involved in our study on this updated dataset to accurately infer future patients with this condition. We also introduce ViTUNet, a hybrid architecture that aims to merge the benefits of UNet and Vision Transformers for precise segmentation of the left ventricle. Furthermore, we train a YOLOv8 model to detect the left ventricle and integrate it with the hybrid model to focus segmentation on a region of interest around the ventricle. Regarding the precision quality achieved by ViTUNet using YOLOv8, results are quite similar to those obtained by the DL-LVTQ tool, suggesting that the dataset is a limiting factor in our improvement. To substantiate this, we conduct a detailed analysis of the MRI slices in the current dataset. By identifying and removing problematic slices, results significantly improve. The introduction of a YOLOv8 model alongside a deep learning model presents a promising approach.
  • Loading...
    Thumbnail Image
    Publication
    Open Access
    Improving a Deep Learning Model to Accurately Diagnose LVNC
    (Federico Guerra, 2023-12-12) Baron Yusti, Jaime Rafael; Bernabé García, Gregorio; González Férez, Pilar; García Carrasco, José Manuel; Casas, Guillem; González-Carrillo, Josefa; Ingeniería y Tecnología de Computadores
    Accurate diagnosis of Left Ventricular Noncompaction Cardiomyopathy (LVNC) is critical for proper patient treatment but remains challenging. This work improves LVNC detection by improving left ventricle segmentation in cardiac MR images. Trabeculated left ventricle indicates LVNC, but automatic segmentation is difficult. We present techniques to improve segmentation and evaluate their impact on LVNC diagnosis. Three main methods are introduced: (1) using full 800 × 800 MR images rather than 512 × 512; (2) a clustering algorithm to eliminate neural network hallucinations; (3) advanced network architectures including Attention U-Net, MSA-UNet, and U-Net++.Experiments utilize cardiac MR datasets from three different hospitals. U-Net++ achieves the best segmentation performance using 800 × 800 images, and it improves the mean segmentation Dice score by 0.02 over the baseline U-Net, the clustering algorithm improves the mean Dice score by 0.06 on the images it affected, and the U-Net++ provides an additional 0.02 mean Dice score over the baseline U-Net. For LVNC diagnosis, U-Net++ achieves 0.896 accuracy, 0.907 precision, and 0.912 F1-score outperforming the baseline U-Net. Proposed techniques enhance LVNC detection, but differences between hospitals reveal problems in improving generalization. This work provides validated methods for precise LVNC diagnosis.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Accessibility
  • Send Feedback