Repository logo
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    New user? Click here to register.
Repository logo

Repositorio Institucional de la Universidad de Murcia

Repository logoRepository logo
  • Communities & Collections
  • All of DSpace
  • menu.section.collectors
  • menu.section.acerca
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    New user? Click here to register.
  1. Home
  2. Browse by Subject

Browsing by Subject "L-DOPA4"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Open Access
    Are seven amino acid substitutions sufficient to explain the evolution of high L-DOPA 4,5-dioxygenase activity leading to betalain pigmentation? Revisiting the gain-of-function mutants of Bean et al. (2018)
    (Wiley, 2023-05-27) Guerrero-Rubio, M. Alejandra; Walker-Hale, Nathanael; Guo, Rui; Sheehan, Hester; Timoneda, Alfonso; Gandía Herrero, Fernando; Brockington, Samuel F.; Bioquímica y Biología Molecular A
    This work revisits a publication by Bean et al. (2018) that reports seven amino acid substitu-tions are essential for the evolution of L-DOPA 4,5-dioxygenase (DODA) activity in Caryo-phyllales. In this study, we explore several concerns which led us to replicate the analyses of Bean et al. (2018). Our comparative analyses, with structural modelling, implicate numerous residues addi-tional to those identified by Bean et al. (2018), with many of these additional residues occur-ring around the active site of BvDODAα1. We therefore replicated the analyses of Bean et al.(2018) to re-observe the effect of their original seven residue substitutions in a BvDODAα2 background, that is the BvDODAα2-mut3 variant. Multiple in vivo assays, in both Saccharomyces cerevisiae and Nicotiana benthamiana,did not result in visible DODA activity in BvDODAα2-mut3, with betalain production always10-fold below BvDODAα1. In vitro assays also revealed substantial differences in both cataly-tic activity and pH optima between BvDODAα1, BvDODAα2 and BvDODAα2-mut3 proteins,explaining their differing performance in vivo. In summary, we were unable to replicate the in vivo analyses of Bean et al. (2018), and our quantitative in vivo and in vitro analyses suggest a minimal effect of these seven residues inaltering catalytic activity of BvDODAα2. We conclude that the evolutionary pathway to high DODA activity is substantially more complex than implied by Bean et al. (2018)

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Accessibility
  • Send Feedback