Repository logo
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    New user? Click here to register.
Repository logo

Repositorio Institucional de la Universidad de Murcia

Repository logoRepository logo
  • Communities & Collections
  • All of DSpace
  • menu.section.collectors
  • menu.section.acerca
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    New user? Click here to register.
  1. Home
  2. Browse by Subject

Browsing by Subject "EA.hy926"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Open Access
    Folic Acid-Modified Ibrutinib-Loaded Silk Fibroin Nanoparticles for Cancer Cell Therapy with Over-Expressed Folate Receptor
    (MDPI, 2023-04-07) Fuster, M. G.; Montalbán, M. G.; Moulefera, I.; Víllora Cano, Gloria; Kaplan, D. L.; Ingeniería Química; Facultad de Química
    The anticancer drug ibrutinib (IB), also known as PCI-32765, is a compound that irreversibly inhibits Bruton’s tyrosine kinase (BTK) and was initially developed as a treatment option for B-cell lineage neoplasms. Its action is not limited to B-cells, as it is expressed in all hematopoietic lineages and plays a crucial role in the tumor microenvironment. However, clinical trials with the drug have resulted in conflicting outcomes against solid tumors. In this study, folic acid-conjugated silk nanoparticles were used for the targeted delivery of IB to the cancer cell lines HeLa, BT-474, and SKBR3 by exploiting the overexpression of folate receptors on their surfaces. The results were compared with those of control healthy cells (EA.hy926). Cellular uptake studies confirmed total internalization of the nanoparticles functionalized by this procedure in the cancer cells after 24 h, compared to nanoparticles not functionalized with folic acid, suggesting that cellular uptake was mediated by folate receptors overexpressed in the cancer cells. The results indicate that the developed nanocarrier can be used for drug targeting applications by enhancing IB uptake in cancer cells with folate receptor overexpression.
  • Loading...
    Thumbnail Image
    Publication
    Open Access
    Synthesis of Cellulose Nanoparticles from Ionic Liquid Solutions for Biomedical Applications
    (MDPI, 2023-01-23) Fuster, M. G.; Moulefera, I.; Muñoz, M. N.; Montalbán, M. G.; Víllora Cano, Gloria; Ingeniería Química; Facultad de Química
    A method for the synthesis of cellulose nanoparticles using the ionic liquid 1-ethyl-3- methylimidazolium acetate has been optimised. The use of a highly biocompatible biopolymer such as cellulose, together with the use of an ionic liquid, makes this method a promising way to obtain nanoparticles with good capability for drug carrying. The operating conditions of the synthesis have been optimised based on the average hydrodynamic diameter, the polydispersity index, determined by Dynamic Light Scattering (DLS) and the Z-potential, obtained by phase analysis light scattering (PALS), to obtain cellulose nanoparticles suitable for use in biomedicine. The obtained cellulose nanoparticles have been characterised by Fourier transform infrared spectroscopy (FTIR) with attenuated total reflectance (ATR), field emission scanning electron microscopy (FESEM) and thermogravimetric analysis (TGA/DTA). Finally, cell viability studies have been performed with a cancer cell line (HeLa) and with a healthy cell line (EA.hy926). These have shown that the cellulose nanoparticles obtained are not cytotoxic in the concentration range of the studied nanoparticles. The results obtained in this work constitute a starting point for future studies on the use of cellulose nanoparticles, synthesised from ionic liquids, for biomedical applications such as targeted drug release or controlled drug release.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Accessibility
  • Send Feedback