Repository logo
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    New user? Click here to register.
Repository logo

Repositorio Institucional de la Universidad de Murcia

Repository logoRepository logo
  • Communities & Collections
  • All of DSpace
  • menu.section.collectors
  • menu.section.acerca
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    New user? Click here to register.
  1. Home
  2. Browse by Subject

Browsing by Subject "Angiolipoma"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Open Access
    Intussusceptive angiogenesis facilitated by microthrombosis has an important example in angiolipoma. An ultrastructural and immunohistochemical study
    (Universidad de Murcia, Departamento de Biologia Celular e Histiologia, 2023) Díaz Flores, Lucio; Gutiérrez, Ricardo; Pino García, Maria; González Gómez, Miriam; Díaz Flores Jr, Lucio; Carrasco, Jose Luis; Madrid, Juan Francisco; Álvarez Argüelles, Hugo
    The microvasculature of angiolipoma frequently presents thrombi. Our objectives are to assess whether intussusceptive angiogenesis (IA) participates in vasculature formation in non-infiltrating angiolipoma and, if so, to explore how thrombi are involved in the IA process. For this purpose, we studied angiolipoma specimens (n: 52), using immunohistochemistry, and confocal and electron microscopy. The results showed the presence of folds and pillars, hallmarks of IA, dividing the vessel lumen. Folds showed a cover formed by reoriented endothelial cells from the vessel wall, or from newly formed folds, and a core initially formed by thrombus fragments (clot components as transitional core), which was replaced by extracellular matrix and invaginating pericytes establishing numerous peg-andsocket junctions with endothelial cells (mature core). A condensed plasmatic electron-dense material surrounded and connected folds and pillars with each other and with the vascular wall, which suggests a clot role in fold/pillar arrangement. In conclusion, we contribute to IA participation in capillary network formation in angiolipoma and the immunohistochemical and ultrastructural events by which microthrombosis facilitates IA. Therefore, in addition to the histogenesis of angiolipoma, we provide an easily obtainable substrate for future studies on clot component action in IA, of clinical and therapeutic interest

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Accessibility
  • Send Feedback