Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10201/20823

Título: Expression of ribosomal protein L4 (rpL4) during neurogenesis and 5-azacytidine, (5AzC)-induced apoptotic process in the rat
Fecha de publicación: 2002
Editorial: Murcia : F. Hernández
ISSN: 0213-3911
Materias relacionadas: CDU::6 - Ciencias aplicadas::61 - Medicina
Palabras clave: Rat
Brain development
Resumen: 5-Azacytidine (5AzC) induces neuronal apoptosis in rat and mouse fetuses. 5AzC also induces apoptosis in undifferentiated PC12 cells, and ribosomal protein L4 (rpL4) mRNA expression increases prior to apoptosis. To clarify the roles of rpL4 during neurogenesis, we first examined the distribution of rpL4 mRNA in the developing rat brain by in situ hybridization and RT-PCR, and compared the results to the distribution of TUNEL- or PCNA-positive cells. rpL4 mRNA expression was strong in the ventricular zone (VZ), subventricular zone (SVZ), cortical plate (CP), cerebral cortex, granule cell layer (GCL), pyramidal cell layer (Py) and external granular layer (EGL) during embryonic and early postnatal days, and it was remarkably weakened thereafter. A lot of PCNApositive cells were observed in VZ, SVZ, and EGL during embryonic and early postnatal days, and such distribution of PCNA-positive cells was almost identical to rpL4 mRNA distribution. Only few TUNEL-positive cells were observed in VZ, SVZ, cerebral cortex, EGL, and hippocampus during embryonic and early postnatal days, and the regions with TUNEL-positive cells were not identical to rpL4 mRNA distribution. Next, the changes of rpL4 mRNA expression in the brain of 5AzC-treated rat fetuses were examined by in situ hybridization and RT-PCR. Apoptotic cells appeared at 9 to 24 hours after treatment (HAT). However, the rpL4 mRNA expression was unchanged during the apoptotic process. From the results, it is suggested that rpL4 would have certain roles in cell proliferation and differentiation during neurogenesis, but have no roles in 5AzC-induced apoptosis in the fetal brain.
Autor/es principal/es: Ueno, M.
Nakayama, Hiroyuki
Kajikawa, S.
Katayama, K.
Suzuki, K.
Doi, K.
Forma parte de: Histology and histopathology
URI: http://hdl.handle.net/10201/20823
Tipo de documento: info:eu-repo/semantics/article
Número páginas / Extensión: 10
Derechos: info:eu-repo/semantics/openAccess
Aparece en las colecciones:Vol.17, nº 3 (2002)



Los ítems de Digitum están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.