Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.1515/jib-2024-0053

Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorBelmonte, Jose M.-
dc.contributor.authorBlanquer, Miguel-
dc.contributor.authorBernabé, Gregorio-
dc.contributor.authorJiménez, Fernando-
dc.contributor.authorGarcía Carrasco, José M.-
dc.date.accessioned2025-06-06T10:14:15Z-
dc.date.available2025-06-06T10:14:15Z-
dc.date.issued2025-06-03-
dc.identifier.citationJournal of Integrative Bioinformatics, 2025, pp. 20240053es
dc.identifier.issnElectronic: 1613-4516-
dc.identifier.urihttp://hdl.handle.net/10201/155655-
dc.description© 2025 the author(s). This manuscript version is made available under the CC-BY 4.0 license http://creativecommons.org/licenses/by/4.0/ This document is the Published Manuscript, version of a Published Work that appeared in final form in Journal of Integrative Bioinformatics. To access the final edited and published work see https://doi.org/10.1515/jib-2024-0053-
dc.description.abstractThis paper investigates the application of Survival Analysis (SA) techniques to forecast outcomes after autologous Hematopoietic Stem Cell Transplantation (aHSCT) for Multiple Myeloma (MM). By leveraging six SA models, we examine their predictive capabilities, measured through the Concordance Index (C-index) metric. Beyond evaluating model performance, we analyze feature importance using permutation and SHAP methods, highlighting key clinical factors such as treatment history, disease stage, and prior disease progression or relapse as critical predictors of survival. The findings suggest that while all models performed well based on the C-index, a detailed examination revealed variations in how each model processed data. Specifically, the Coxnet and Random Survival Forest models exhibited a more thorough use of clinical variables, whereas the gradient boosting models appeared to rely on a narrower range of features, potentially limiting their ability to differentiate between patients with comparable profiles. Risk predictions categorized patients into low, moderate, and high-risk levels. For lower-risk patients, the procedure showed positive outcomes, while higher-risk individuals were predicted to have limited survival benefits, recommending alternative treatments. Lastly, we propose future research to expand these models into time-to-event estimations, offering additional support for decision-making by predicting patient life expectancy post-transplant, considering their pre-transplant clinical attributes.es
dc.formatapplication/pdfes
dc.format.extent12es
dc.languageenges
dc.publisherDe Gruyteres
dc.relationThis work has been partially funded by Grant TED2021-129221B-I00, funded by MCIN/AEI/10.13039/501100011033 and by the European Union NextGenerationEU/PRTR.es
dc.rightsinfo:eu-repo/semantics/openAccesses
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectArtificial Intelligencees
dc.subjectFeature importancees
dc.subjectMachine Learninges
dc.subjectSurvival Analysises
dc.subjectSurvival Predictiones
dc.titleSurvival risk prediction in hematopoietic stem cell transplantation for multiple myelomaes
dc.typeinfo:eu-repo/semantics/articlees
dc.relation.publisherversionhttps://www.degruyterbrill.com/document/doi/10.1515/jib-2024-0053/htmles
dc.identifier.doihttps://doi.org/10.1515/jib-2024-0053-
dc.contributor.departmentDepartamento de Ingeniería y Tecnología de Computadoreses
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
Belmonte_SA_JIB.pdf919,21 kBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons