Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.1007/978-3-031-87873-2_11

Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorBelmonte, José María-
dc.contributor.authorBlanquer, Miguel-
dc.contributor.authorBernabé García, Gregorio-
dc.contributor.authorJiménez, Fernando-
dc.contributor.authorGarcía, José Manuel-
dc.date.accessioned2025-05-16T06:43:10Z-
dc.date.available2025-05-16T06:43:10Z-
dc.date.issued2025-04-25-
dc.identifier.isbnPrint: 978-3-031-87872-5-
dc.identifier.isbnElectronic: 978-3-031-87873-2-
dc.identifier.urihttp://hdl.handle.net/10201/154743-
dc.description© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG.-
dc.description.abstractThis work explores the application of Survival Analysis in the context of hematopoietic stem cell transplantation for multiple myeloma to enhance the predictive capacity and interpretability of transplant outcomes and inspect the patients’ overall survival. Our methodology uses all the proposed Survival Analysis models. These models are used to conduct a feature importance analysis and do some survival predictions with the interpretation of patient outcomes. The dataset, comprising 254 instances and 15 attributes, includes medical information collected from multiple myeloma patients before hematopoietic stem cell transplantation procedures. The primary objective of this work is to assess the robustness of Survival Analysis models with our data based on the concordance index metric. Through feature importance analysis, it has been revealed that variables such as the International Staging System, treatment lines, age, and disease relapse play pivotal roles in determining patient survival post-transplant. Survival predictions have been conducted for three distinct cases from the dataset, evaluating the risks patients may encounter following their treatments. These results have been validated by healthcare professionals, underscoring the reliability and applicability of this study’s findings in medical scenarios.-
dc.formatapplication/pdfes
dc.format.extent10es
dc.languageenges
dc.publisherSpringer Nature-
dc.relationThis work has been partially funded by Grant TED2021-129221B-I00 funded by MCIN/AEI/10.13039/501100011033 and by the “European Union NextGenerationEU/PRTR”.es
dc.relation.ispartofPractical Applications of Computational Biology and Bioinformatics, 18th International Conference (PACBB 2024), p.p. 101-110es
dc.rightsinfo:eu-repo/semantics/embargoedAccesses
dc.subjectSurvival Analysis-
dc.subjectHematopoietic Stem Cell Transplantation-
dc.subjectMultiple Myeloma-
dc.subjectFeature importance-
dc.subjectSurvival predictions-
dc.titleSurvival analysis in hematopoietic stem cell transplantation for multiple myeloma: methodology and survival predictionses
dc.typeinfo:eu-repo/semantics/articlees
dc.relation.publisherversionhttps://link.springer.com/chapter/10.1007/978-3-031-87873-2_11-
dc.embargo.termsSi-
dc.identifier.doihttps://doi.org/10.1007/978-3-031-87873-2_11-
dc.contributor.departmentDepartamento de Ingeniería y Tecnología de Computadores-
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
pcabb24-hematologia.pdf574,14 kBAdobe PDFVista previa
Visualizar/Abrir    Solicitar una copia


Los ítems de Digitum están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.