Por favor, use este identificador para citar o enlazar este ítem:
https://doi.org/10.1007/978-3-031-87873-2_8


Título: | Validating retinaNet for the object detection-based mitosis detection in the MIDOG challenge |
Fecha de publicación: | 25-abr-2025 |
Editorial: | Springer Nature |
ISBN: | Print: 978-3-031-87872-5 Electronic: 978-3-031-87873-2 |
Palabras clave: | Mitosis detection Deep Learning Object detection MIDOG Challenge |
Resumen: | Mitosis detection is critical in histopathology for accurate diagnosis and prognosis of tumors, a topic of particular interest underscored by recent challenges. In this study, we focus on developing deep learning (DL) solutions to confront this challenge within the framework of the MIDOG challenge. Leveraging the newest MIDOG challenge dataset, the MIDOG++ dataset, we explore the efficacy of object detection models. Specifically, the RetinaNet model using fastai and PyTorch frameworks. We replicate and validate the reference work, RetinaNet, using fastai, and we propose the RetinaNet model using PyTorch. Through rigorous training and evaluation, we analyze the performance of these models in detecting mitotic figures, crucial for automating histopathological analysis and improving diagnostic accuracy. Our study demonstrates the effectiveness of the RetinaNet model in mitosis detection within histopathological images. Obtaining favorable F1 scores across the different scenarios and analyzing the relationship between different tumor types. |
Autor/es principal/es: | García-Salmerón, Jesús García, José Manuel Bernabé García, Gregorio González Férez, Pilar |
Forma parte de: | Practical Applications of Computational Biology and Bioinformatics, 18th International Conference (PACBB 2024), p.p. 71-80 |
Versión del editor: | https://link.springer.com/chapter/10.1007/978-3-031-87873-2_8 |
URI: | http://hdl.handle.net/10201/154712 |
DOI: | https://doi.org/10.1007/978-3-031-87873-2_8 |
Tipo de documento: | info:eu-repo/semantics/article |
Número páginas / Extensión: | 10 |
Derechos: | info:eu-repo/semantics/embargoedAccess |
Descripción: | © 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG. |
Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
pcabb24-histopatologia.pdf | 1,4 MB | Adobe PDF | ![]() Visualizar/Abrir Solicitar una copia |
Los ítems de Digitum están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.