Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.1007/978-3-031-87873-2_8

Título: Validating retinaNet for the object detection-based mitosis detection in the MIDOG challenge
Fecha de publicación: 25-abr-2025
Editorial: Springer Nature
ISBN: Print: 978-3-031-87872-5
Electronic: 978-3-031-87873-2
Palabras clave: Mitosis detection
Deep Learning
Object detection
MIDOG Challenge
Resumen: Mitosis detection is critical in histopathology for accurate diagnosis and prognosis of tumors, a topic of particular interest underscored by recent challenges. In this study, we focus on developing deep learning (DL) solutions to confront this challenge within the framework of the MIDOG challenge. Leveraging the newest MIDOG challenge dataset, the MIDOG++ dataset, we explore the efficacy of object detection models. Specifically, the RetinaNet model using fastai and PyTorch frameworks. We replicate and validate the reference work, RetinaNet, using fastai, and we propose the RetinaNet model using PyTorch. Through rigorous training and evaluation, we analyze the performance of these models in detecting mitotic figures, crucial for automating histopathological analysis and improving diagnostic accuracy. Our study demonstrates the effectiveness of the RetinaNet model in mitosis detection within histopathological images. Obtaining favorable F1 scores across the different scenarios and analyzing the relationship between different tumor types.
Autor/es principal/es: García-Salmerón, Jesús
García, José Manuel
Bernabé García, Gregorio
González Férez, Pilar
Forma parte de: Practical Applications of Computational Biology and Bioinformatics, 18th International Conference (PACBB 2024), p.p. 71-80
Versión del editor: https://link.springer.com/chapter/10.1007/978-3-031-87873-2_8
URI: http://hdl.handle.net/10201/154712
DOI: https://doi.org/10.1007/978-3-031-87873-2_8
Tipo de documento: info:eu-repo/semantics/article
Número páginas / Extensión: 10
Derechos: info:eu-repo/semantics/embargoedAccess
Descripción: © 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG.
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
pcabb24-histopatologia.pdf1,4 MBAdobe PDFVista previa
Visualizar/Abrir    Solicitar una copia


Los ítems de Digitum están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.