Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.1007/978-3-031-87873-2_14

Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorDe Haro, Salvador-
dc.contributor.authorGonzález Férez, Pilar-
dc.contributor.authorGarcía, José M.-
dc.contributor.authorBernabé García, Gregorio-
dc.date.accessioned2025-05-14T08:59:54Z-
dc.date.available2025-05-14T08:59:54Z-
dc.date.issued2025-04-25-
dc.identifier.isbnPrint: 978-3-031-87872-5-
dc.identifier.isbnElectronic: 978-3-031-87873-2-
dc.identifier.urihttp://hdl.handle.net/10201/154560-
dc.description© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG.-
dc.description.abstractHypertrabeculation or left ventricular non-compaction (LVNC) is a cardiac condition that has recently been recognized. While several methods exist for accurately measuring the trabeculae in the ventricle, there is still no consensus within the medical community regarding the optimal approach. In previous work, we introduced DL-LVTQ, a tool based on a UNet convolutional neural network designed to quantify the trabeculae in the left ventricle. In this paper, we present an expanded dataset that includes new patients affected by a cardiomyopathy known as Titin, necessitating the retraining of the models involved in our study on this updated dataset to accurately infer future patients with this condition. We also introduce ViTUNet, a hybrid architecture that aims to merge the benefits of UNet and Vision Transformers for precise segmentation of the left ventricle. Furthermore, we train a YOLOv8 model to detect the left ventricle and integrate it with the hybrid model to focus segmentation on a region of interest around the ventricle. Regarding the precision quality achieved by ViTUNet using YOLOv8, results are quite similar to those obtained by the DL-LVTQ tool, suggesting that the dataset is a limiting factor in our improvement. To substantiate this, we conduct a detailed analysis of the MRI slices in the current dataset. By identifying and removing problematic slices, results significantly improve. The introduction of a YOLOv8 model alongside a deep learning model presents a promising approach.-
dc.formatapplication/pdfes
dc.format.extent11es
dc.languageenges
dc.publisherSpringer-
dc.relationThis work has been partially funded by Grant TED2021-129221B-I00 funded by MCIN/AEI/10.13039/501100011033 and by the “European Union NextGenerationEU/PRTR”.es
dc.relation.ispartofPractical Applications of Computational Biology and Bioinformatics, 18th International Conference (PACBB 2024), p.p. 132–142es
dc.rightsinfo:eu-repo/semantics/embargoedAccesses
dc.subjectLeft ventricular non-compaction diagnosis-
dc.subjectUNet-
dc.subjectVision-
dc.subjectTransformers-
dc.subjectYOLOv8-
dc.subjectMRI Image segmentation-
dc.subjectData analysis-
dc.titleApplication of YOLOv8 and a model based on vision transformers and UNet for LVNC diagnosis: advantages and limitationses
dc.typeinfo:eu-repo/semantics/articlees
dc.relation.publisherversionhttps://link.springer.com/chapter/10.1007/978-3-031-87873-2_14-
dc.embargo.termsSi-
dc.identifier.doihttps://doi.org/10.1007/978-3-031-87873-2_14-
dc.contributor.departmentDepartamento de Ingeniería y Tecnología de Computadoreses
Aparece en las colecciones:Libros o capítulos de libro

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
pcabb24-cardiologia-yolo.pdf1,87 MBAdobe PDFVista previa
Visualizar/Abrir    Solicitar una copia


Los ítems de Digitum están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.