Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.14670/HH-18-840

Título: Time course analysis of changes in neuronal loss, oxidative stress, and excitotoxicity in gerbil hippocampus following ischemia and reperfusion under hyperthermic conditions
Fecha de publicación: 2025
Editorial: Universidad de Murcia, Departamento de Biologia Celular e Histiologia
Cita bibliográfica: Histology and Histopathology Vol. 40, nº06 (2025)
ISSN: 0213-3911
1699-5848
Materias relacionadas: CDU::6 - Ciencias aplicadas::61 - Medicina::616 - Patología. Medicina clínica. Oncología
Palabras clave: Antioxidant enzyme
DNA damage
Glutamate transporters
Astrocytes
SOD2
Transient forebrain ischemia
Resumen: Oxidative stress and excitotoxicity are the major causes of neuronal death/loss in the brain following ischemia and reperfusion (IR). Hyperthermia is known to exacerbate ischemic neuronal damage; however, the underlying mechanisms remain unclear. This study investigated the mechanisms underlying neuronal damage caused by IR injury (IRI) under hyperthermic conditions in the gerbil hippocampal CA1 region. Gerbils were controlled at normothermia (37.5±0.2°C) or hyperthermia (39.5±0.2°C). After temperature control for 30 min, the animals received IRI (following 5 min of transient forebrain ischemia) or sham ischemia, and were subsequently sacrificed at 0, 3, 6, 12, 24, 48, and 120h after IRI. Neuronal death was examined using neuronal nuclear antigen immuno-histochemistry and Fluoro-Jade B histofluorescence. Oxidative stress was analyzed by immunohistochemistry for 8-Hydroxy-2'-deoxyguanosine (8OHdG) and superoxide dismutase 2 (SOD2). Excitotoxicity was investigated by immunohistochemistry and western blotting for glutamate transporter 1 (GLT1). Immuno-histochemical staining for glial fibrillary acidic proteins (GFAP) was performed to detect reactive astrogliosis. Loss of pyramidal neurons was detected earlier (48h post-IRI) in the hyperthermia-IRI group than in the normothermia-IRI group (120h post-IRI). Further, 8OHdG and SOD2 immunoreactivity in the hyper-thermia-IRI group was significantly higher than that in the normothermia-IRI group. Changes in GLT1 immunoreactivity in both groups were biphasic, indicating that the immunoreactivity and protein levels were significantly lower in the hyperthermia-IRI group. GFAP immunoreactivity was enhanced following neuronal loss, indicating that the immunoreactivity was significantly higher in the hyperthermia-IRI group. Taken together, these results suggest that brain IR under hyperthermic conditions can aggravate neuronal damage in the hippocampal CA1 region through severe oxidative stress and excitotoxicity
Autor/es principal/es: Lee, Tae Kyeong
Kim, Dae Won
Park, Joon Ha
Lee, Choong Hyun
Yang, Se Ran
Shin, Myoung Cheol
Won, Moo Ho
Cho, Jun Hwi
Ahn, Ji Hyeon
URI: http://hdl.handle.net/10201/154081
DOI: https://doi.org/10.14670/HH-18-840
Tipo de documento: info:eu-repo/semantics/article
Número páginas / Extensión: 14
Derechos: info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Aparece en las colecciones:Vol.40, nº6 (2025)

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
Lee-40-843-856-2025.pdf20,93 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons