Por favor, use este identificador para citar o enlazar este ítem:
htpps://doi.org/10.3390/IJMS25010063


Título: | Design, synthesis and gene modulation insights into pigments derived from tryptophan-betaxanthin, which act against tumor development in Caenorhabditis elegans |
Fecha de publicación: | 20-dic-2023 |
Editorial: | MDPI |
Cita bibliográfica: | Int. J. Mol. Sci. 2024, 25, 63 |
ISSN: | Print: 1661-6596 Electronic: 1422-0067 |
Materias relacionadas: | CDU::5 - Ciencias puras y naturales::57 - Biología::577 - Bioquímica. Biología molecular. Biofísica |
Palabras clave: | Betaxanthins Cancer Caenorhabditis elegans Phytochemicals Preclinical model Tryptophan |
Resumen: | The use of betalains, which are nitrogenous plant pigments, by the food industry is widespread and reflects their safety after intake. The recent research showed outstanding results for L-tryptophan-betaxanthin, a phytochemical present in traditional Chinese medicine, as an antitumoral agent when the activity was evaluated in the animal model Caenorhabditis elegans. Thus, L-tryptophanbetaxanthin is now presented as a lead compound, from which eleven novel structurally related betaxanthins have been designed, biotechnologically produced, purified, and characterized. The antitumoral effect of the derived compounds was evaluated on the JK1466 tumoral strain of C. elegans. All the tested molecules significantly reduced the tumoral gonad sizes in a range between 31.4% and 43.0%. Among the novel compounds synthesized, tryptophan methyl ester-betaxanthin and tryptophan benzyl ester-betaxanthin, which are the first betalains to contain an ester group in their structures, caused tumor size reductions of 43.0% and 42.6%, respectively, after administration to the model animal. Since these were the two most effective molecules, their mechanism of action was investigated by microarray analysis. Differential gene expression analysis showed that tryptophan methyl ester-betaxanthin and tryptophan benzyl ester-betaxanthin were able to down-regulate the key genes of the mTOR pathway, such as daf-15 and rict-1. |
Autor/es principal/es: | Henarejos Escudero, Paula Méndez-García, Fernando F. Hernández García, Samanta Martínez Rodríguez, Pedro Gandía Herrero, Fernando |
Versión del editor: | https://www.mdpi.com/1422-0067/25/1/63 |
URI: | http://hdl.handle.net/10201/153937 |
DOI: | htpps://doi.org/10.3390/IJMS25010063 |
Tipo de documento: | info:eu-repo/semantics/article |
Número páginas / Extensión: | 14 |
Derechos: | info:eu-repo/semantics/openAccess Atribución 4.0 Internacional |
Descripción: | © 2023, MDPI. This manuscript version is made available under the CC-BY 4.0 license http://creativecommons.org/licenses/by/4.0/. This document is the Published version of a Published Work that appeared in final form in International Journal of Molecular Sciences. To access the final edited and published work see https://doi.org/10.3390/ijms25010063 |
Matería temporal: | 2024 |
Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
ijms-25-00063-v2.pdf | 1,69 MB | Adobe PDF | ![]() Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons