Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.3390/s20051434

Título: Evaluation of the Use of Compressed Sensing in Data Harvesting for Vehicular Sensor Networks
Fecha de publicación: 6-mar-2020
Editorial: MDPI
Cita bibliográfica: Sensors 2020, 20, 1434
ISSN: 1424-8220
Materias relacionadas: CDU::6 - Ciencias aplicadas::62 - Ingeniería. Tecnología
Palabras clave: Compressed sensing
Vehicular Sensor Networks
Data Gathering
Resumen: We propose a new harvesting approach for Vehicular Sensor Networks based on compressed sensing (CS) technology called Compressed Sensing-based V ehicular Data Harvesting (CS-VDH). This compression technology allows for the reduction of the information volume that nodes must send back to the fusion center and also an accurate recovery of the original data, even in absence of several original measurements. Our proposed method, thanks to a proper design of a delay function, orders the transmission of these measurements, being the nodes farther from the fusion center, the ones starting this transmission. This way, intermediate nodes are more likely to introduce their measurements in a packet traversing the network and to apply the CS technology. This way the contribution is twofold, adding different measurements to traversing packets, we reduce the total overload of the network, and also reducing the size of the packets thanks to the applied compression technology. We evaluate our solution by using ns-2 simulations in a realistic vehicular environment generated by SUMO, a well-known traffic simulator tool in the Vehicular Network domain. Our simulations show that CS-VDH outperforms Delay-Bounded Vehicular Data Gathering (DB-VDG), a well-known protocol for data gathering in vehicular sensor networks which considers a specific delay bound. We also evaluated the proper design of our delay function, as well as the accuracy in the reconstruction of the original data. Regarding this latter topic, our experiments proved that our proposed solution can recover sampled data with little error while still reducing the amount of information traveling through the vehicular network.
Autor/es principal/es: Martínez Navarro, Juan Antonio
Ruiz Martinez, Pedro Miguel
Skarmeta Gómez, Antonio F.
Versión del editor: https://www.mdpi.com/1424-8220/20/5/1434
URI: http://hdl.handle.net/10201/149924
DOI: https://doi.org/10.3390/s20051434
Tipo de documento: info:eu-repo/semantics/article
Número páginas / Extensión: 29
Derechos: info:eu-repo/semantics/openAccess
Atribución 4.0 Internacional
Descripción: © 2020 The authors. This document is the published version of a published work that appeared in final form in Sensors. This document is made available under the CC-BY 4.0 license http://creativecommons.org/licenses/by/4.0. To access the final edited and published work see: https://doi.org/10.3390/s20051434
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
sensors-20-01434-Compressed-Sensing-with-cover.pdfArtículo3,19 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons