Por favor, use este identificador para citar o enlazar este ítem:
https://doi.org/10.1090/memo/1501


Título: | Wind Finslerian structures: from Zermelo’s navigation to the causality of spacetimes |
Fecha de publicación: | 7-ago-2024 |
Editorial: | American Mathematical Society |
Cita bibliográfica: | Memoirs of the American Mathematical Society, 2024, Vol. 300, N. 1501 |
ISSN: | Print: 0065-9266 Electronic: 1947-6221 |
Palabras clave: | Finsler spacetimes and generalizations Killing vector field Zermelo navigation problem Kropina metric Spacetime |
Resumen: | The notion of wind Finslerian structure Σ is developed; this is a generalization of Finsler metrics (and Kropina ones) where the indicatrices at the tangent spaces may not contain the zero vector. In the particular case that these indicatrices are ellipsoids, called here wind Riemannian structures, they admit a double interpretation which provides: (a) a model for classical Zermelo’s navigation problem even when the trajectories of the moving objects (planes, ships) are influenced by strong winds or streams, and (b) a natural description of the causal structure of relativistic spacetimes endowed with a non-vanishing Killing vector field K (SSTK splittings), in terms of Finslerian elements. These elements can be regarded as conformally invariant Killing initial data on a partial Cauchy hypersurface. The links between both interpretations as well as the possibility to improve the results on one of them using the other viewpoint are stressed. The wind Finslerian structure Σ is described in terms of two (conic, pseudo) Finsler metrics, F and Fl, the former with a convex indicatrix and the latter with a concave one. Notions such as balls and geodesics are extended to Σ. Among the applications, we obtain the solution of Zermelo’s navigation with arbitrary time-independent wind, metric-type properties for Σ (distance-type arrival function, completeness, existence of minimizing, maximizing or closed geodesics), as well as description of spacetime elements (Cauchy developments, black hole horizons) in terms of Finslerian elements in Killing initial data. A general Fermat’s principle of independent interest for arbitrary spacetimes, as well as its applications to SSTK spacetimes and Zermelo’s navigation, are also provided. |
Autor/es principal/es: | Caponio, Erasmo Javaloyes, Miguel Angel Sánchez, Miguel |
Versión del editor: | https://www.ams.org/books/memo/1501/ |
URI: | http://hdl.handle.net/10201/149804 |
DOI: | https://doi.org/10.1090/memo/1501 |
Tipo de documento: | info:eu-repo/semantics/article |
Número páginas / Extensión: | 125 |
Derechos: | info:eu-repo/semantics/embargoedAccess |
Descripción: | © 2024 American Mathematical Society. This document is the Published Manuscript, version of a Published Work that appeared in final form in Memoirs of the American Mathematical Society. To access the final edited and published work see https://doi.org/10.1090/memo/1501 |
Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
MAMS(CJS24)-4-128 (2).pdf | 1,4 MB | Adobe PDF | ![]() Visualizar/Abrir Solicitar una copia |
Los ítems de Digitum están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.