Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.1016/j.na.2021.112337

Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorJavaloyes Victoria, Miguel Ángel-
dc.contributor.authorPendás-Recondo, Enrique-
dc.contributor.authorSánchez, Miguel-
dc.date.accessioned2025-01-30T16:17:09Z-
dc.date.available2025-01-30T16:17:09Z-
dc.date.issued2021-08-
dc.identifier.citationNonlinear Analysis, 2021, Vol. 209 : 112337es
dc.identifier.issnPrint: 0362-546X-
dc.identifier.issnElectronic: 1873-5215-
dc.identifier.urihttp://hdl.handle.net/10201/149791-
dc.description© 2021 Elsevier Ltd. This document is the Published Manuscript, version of a Published Work that appeared in final form in Nonlinear Analysis. To access the final edited and published work see https://doi.org/10.1016/j.na.2021.112337-
dc.description.abstractA general framework for the description of classic wave propagation is introduced. This relies on a cone structure C determined by an intrinsic space Σ of velocities of propagation (point, direction and time-dependent) and an observers’ vector field ∂/∂t whose integral curves provide both a Zermelo problem for the wave and an auxiliary Lorentz–Finsler metric G compatible with C. The PDE for the wavefront is reduced to the ODE for the t-parametrized cone geodesics of C. Particular cases include time-independence (∂/∂t is Killing for G), infinitesimally ellipsoidal propagation (G can be replaced by a Lorentz metric) or the case of a medium which moves with respect to ∂/∂t faster than the wave (the “strong wind” case of a sound wave), where a conic time-dependent Finsler metric emerges. The specific case of wildfire propagation is revisited.es
dc.formatapplication/pdfes
dc.format.extent29es
dc.languageenges
dc.publisherElsevier-
dc.relationThis work is a result of the activity developed within the framework of the Programme in Support of Excellence Groups of the Región de Murcia, Spain, by Fundación Séneca, Science and Technology Agency of the Región de Murcia. MAJ was partially supported by MICINN/FEDER, Spain project reference PGC2018- 097046-B-I00 and Fundación Séneca, Spain (Región de Murcia) project reference 19901/GERM/15, Spain, and EPR and MS by Spanish MINECO/FEDER project reference MTM2016-78807-C2-1-P. MS was also partially supported by FEDER-Andalucía, Spain grant A-FQM-494-UGR18, and EPR by Programa de Becas de Iniciación a la Investigación para Estudiantes de Másteres Oficiales de la U. Granada, Spain.es
dc.rightsinfo:eu-repo/semantics/embargoedAccesses
dc.subjectHuygen's principlees
dc.subjectZermelo's navigation problemes
dc.subjectWavefrontes
dc.subjectAnisotropic mediumes
dc.subjectRheonomic Lagrangianes
dc.subjectLorentz-Finsler metrics and spacetimeses
dc.subjectWildefire propagationes
dc.subjectAnalogue Gravityes
dc.titleApplications of cone structures to the anisotropic rheonomic Huygens’ principlees
dc.typeinfo:eu-repo/semantics/articlees
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0362546X21000596-
dc.embargo.termsSi-
dc.identifier.doihttps://doi.org/10.1016/j.na.2021.112337-
dc.contributor.departmentDepartamento de Matemáticas-
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
NonlinearAnal(JPS21).pdf2,23 MBAdobe PDFVista previa
Visualizar/Abrir    Solicitar una copia


Los ítems de Digitum están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.