Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.1007/s10231-018-0769-1

Título: On singular Finsler foliation
Fecha de publicación: 4-jul-2018
Editorial: Springer
Cita bibliográfica: Annali di Matematica Pura ed Applicata, 2019, Vol. 198, pp. 205-226
ISSN: Print: 0373-3114
Electronic: 1618-1891
Palabras clave: Finsler foliations
Randers spaces
Finsler submersion
Resumen: In this paper we introduce the concept of singular Finsler foliation, which generalizes the concepts of Finsler actions, Finsler submersions and (regular) Finsler foliations. We show that if F is a singular Finsler foliation with closed leaves on a Randers manifold (M, Z) with Zermelo data (h, W ), then F is a singular Riemannian foliation on the Riemannian manifold (M,h). As a direct consequence, we infer that the regular leaves are equifocal submanifolds (a generalization of isoparametric submanifolds) when the wind W is an infinitesimal homothety of h (e.g., when W is a Killing vector field or M has constant Finsler curvature). We also present a slice theorem that locally relates singular Finsler foliations on Finsler manifolds with singular Finsler foliations on Minkowski spaces.
Autor/es principal/es: Alexandrino, Marcos M.
Alves, Benigno O.
Javaloyes Victoria, Miguel Ángel
Versión del editor: https://link.springer.com/article/10.1007/s10231-018-0769-1
URI: http://hdl.handle.net/10201/149789
DOI: https://doi.org/10.1007/s10231-018-0769-1
Tipo de documento: info:eu-repo/semantics/article
Número páginas / Extensión: 22
Derechos: info:eu-repo/semantics/embargoedAccess
Descripción: © 2018, Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature. This document is the Published Manuscript, version of a Published Work that appeared in final form in Annali di Matematica Pura ed Applicata. To access the final edited and published work see https://doi.org/10.1007/s10231-018-0769-1
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
AMPA(AAJ19).pdf593,63 kBAdobe PDFVista previa
Visualizar/Abrir    Solicitar una copia


Los ítems de Digitum están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.