Por favor, use este identificador para citar o enlazar este ítem:
https://doi.org/10.1007/s10231-018-0769-1


Título: | On singular Finsler foliation |
Fecha de publicación: | 4-jul-2018 |
Editorial: | Springer |
Cita bibliográfica: | Annali di Matematica Pura ed Applicata, 2019, Vol. 198, pp. 205-226 |
ISSN: | Print: 0373-3114 Electronic: 1618-1891 |
Palabras clave: | Finsler foliations Randers spaces Finsler submersion |
Resumen: | In this paper we introduce the concept of singular Finsler foliation, which generalizes the concepts of Finsler actions, Finsler submersions and (regular) Finsler foliations. We show that if F is a singular Finsler foliation with closed leaves on a Randers manifold (M, Z) with Zermelo data (h, W ), then F is a singular Riemannian foliation on the Riemannian manifold (M,h). As a direct consequence, we infer that the regular leaves are equifocal submanifolds (a generalization of isoparametric submanifolds) when the wind W is an infinitesimal homothety of h (e.g., when W is a Killing vector field or M has constant Finsler curvature). We also present a slice theorem that locally relates singular Finsler foliations on Finsler manifolds with singular Finsler foliations on Minkowski spaces. |
Autor/es principal/es: | Alexandrino, Marcos M. Alves, Benigno O. Javaloyes Victoria, Miguel Ángel |
Versión del editor: | https://link.springer.com/article/10.1007/s10231-018-0769-1 |
URI: | http://hdl.handle.net/10201/149789 |
DOI: | https://doi.org/10.1007/s10231-018-0769-1 |
Tipo de documento: | info:eu-repo/semantics/article |
Número páginas / Extensión: | 22 |
Derechos: | info:eu-repo/semantics/embargoedAccess |
Descripción: | © 2018, Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature. This document is the Published Manuscript, version of a Published Work that appeared in final form in Annali di Matematica Pura ed Applicata. To access the final edited and published work see https://doi.org/10.1007/s10231-018-0769-1 |
Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
AMPA(AAJ19).pdf | 593,63 kB | Adobe PDF | ![]() Visualizar/Abrir Solicitar una copia |
Los ítems de Digitum están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.