Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.1137/22M1477866

Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorJavaloyes Victoria, Miguel Ángel-
dc.contributor.authorPendás-Recondo, Enrique-
dc.contributor.authorSánchez, Miguel-
dc.date.accessioned2025-01-30T16:23:50Z-
dc.date.available2025-01-30T16:23:50Z-
dc.date.issued2023-05-23-
dc.identifier.citationSIAM Journal on Applied Algebra and Geometry, 2023, Vol. 7, N. 2, pp. 414-439es
dc.identifier.issnElectronic: 2470-6566-
dc.identifier.urihttp://hdl.handle.net/10201/149765-
dc.description© 2023 Society for Industrial and Applied Mathematics. This document is the Published Manuscript, version of a Published Work that appeared in final form in SIAM Journal on Applied Algebra and Geometry. To access the final edited and published work see https://doi.org/10.1137/22M1477866-
dc.description.abstractA geometric model for the computation of the firefront of a forest wildfire which takes into account several effects (possibly time-dependent wind, anisotropies, and slope of the ground) is introduced. It relies on a general theoretical framework, which reduces the hyperbolic PDE system of any wave to an ODE in a Lorentz-Finsler framework. The wind induces a sort of double semielliptical fire growth, while the influence of the slope is modeled by means of a term which comes from the Matsumoto metric (i.e., the standard nonreversible Finsler metric that measures the time when going up and down a hill). These contributions make a significant difference from previous models because, now, the infinitesimal wavefronts are not restricted to be elliptical. Even though this is a technical complication, the wavefronts remain computable in real time. Some simulations of evolution are shown, paying special attention to possible crossovers of the fire.es
dc.formatapplication/pdfes
dc.format.extent26es
dc.languageenges
dc.publisherSociety for Industrial and Applied Mathematics-
dc.relationThe first and second authors were partially supported by the projects PGC2018-097046-B-I00 and PID2021-124157NB-I00, funded by MCIN/AEI/10.13039/501100011033/ ``ERDF A way of making Europe"", and also by Ayudas a proyectos para el desarrollo de investigación científica y técnica por grupos competitivos (Comunidad Autónoma de la Región de Murcia), included in the Programa Regional de Fomento de la Investigación Científica y Técnica (Plan de Actuación 2022) of the Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia, REF. 21899/PI/22. The second and third authors were partially supported by the project PID2020-116126GB-I00 funded by MCIN/AEI/10.13039/501100011033 and P20-01391 (PAIDI 2020, Junta de Andalucía), as well as the framework IMAG-Mar\'{\i}a de Maeztu grant CEX2020-001105-M/AEI/10.13039/501100011033. The second author was also supported by Ayudas para la Formación de Profesorado Universitario (FPU) from the Spanish Government.es
dc.rightsinfo:eu-repo/semantics/embargoedAccesses
dc.subjectFinsler metrics and spacetimeses
dc.subjectWildfire propagationes
dc.subjectMatsumoto metrices
dc.subjectNonelliptical fire growthes
dc.titleA general model for wildfire propagation with wind and slopees
dc.typeinfo:eu-repo/semantics/articlees
dc.relation.publisherversionhttps://epubs.siam.org/doi/full/10.1137/22M1477866-
dc.embargo.termsSi-
dc.identifier.doihttps://doi.org/10.1137/22M1477866-
dc.contributor.departmentDepartamento de Matemáticas-
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
SIAM(JPS223).pdf5,93 MBAdobe PDFVista previa
Visualizar/Abrir    Solicitar una copia


Los ítems de Digitum están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.