Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.1016/j.ecolind.2018.03.077

Título: KnowBR: an application to map the geographical variation of survey effort and identify well-surveyed areas from biodiversity databases
Fecha de publicación: ago-2018
Editorial: Elsevier
Cita bibliográfica: Ecological Indicators, 2018, Vol. 91, pp. 241-248
ISSN: Print: 1470-160X
Electronic: 1872-7034
Palabras clave: Spatial bias
Data limitations
Database records
Geographic distribution
Survey completeness
Wallacean shortfall
Resumen: Biodiversity databases are typically incomplete and biased. We identify their three main limitations for characterizing the geographic distributions of species: unknown levels of survey effort, unknown absences of a species from a region, and unknown level of repeated occurrence of a species in different samples collected at the same location. These limitations hinder our ability to distinguish between the actual absence of a species at a given location and its (erroneous) apparent absence as consequence of inadequate surveys. Good practice in biodiversity research requires knowledge of the number, location and degree of completeness of relatively well-surveyed inventories within territorial units. We herein present KnowBR, an application designed to simultaneously estimate the completeness of species inventories across an unlimited number of spatial units and different geographical extents, resolutions and unit expanses from any biodiversity database. We use the number of database records gathered in a territorial unit as a surrogate of survey effort, assuming that such number correlates positively with the probability of recording a species within such area. Consequently, KnowBR uses a “record-by-species” matrix to estimate the relationship between the accumulated number of species and the number of database records to characterize the degree of completeness of the surveys. The final slope of the species accumulation curves and completeness percentages are used to discriminate and map well-surveyed territorial units according to user criteria. The capacity and possibilities of KnowBR are demonstrated through two examples derived from data of varying geographic extent and numbers of records. Further, we identify the main advances that would improve the current functionality of KnowBR.
Autor/es principal/es: Lobo, Jorge M.
Hortal, Joaquín
Yela, José Luis
Millán, Andrés
Sánchez Fernández, David
García-Roselló, Emilio
González Dacosta, Jacinto
Heine, Juergen
González Vilas, Luís
Guisande, Castor
Versión del editor: https://www.sciencedirect.com/science/article/pii/S1470160X18302322?via%3Dihub
URI: http://hdl.handle.net/10201/149482
DOI: https://doi.org/10.1016/j.ecolind.2018.03.077
Tipo de documento: info:eu-repo/semantics/article
Número páginas / Extensión: 8
Derechos: info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Descripción: © 2018 Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ This document is the Published version of a Published Work that appeared in final form in Ecological Indicators. To access the final edited and published work see https://doi.org/10.1016/j.ecolind.2018.03.077
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
Lobo etal 2019 Ecol_Ind.pdf1,18 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons