Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.1016/j.jmaa.2017.03.048

Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorOrihuela Calatayud, José-
dc.contributor.authorZapata García, José Miguel-
dc.date.accessioned2025-01-26T10:02:05Z-
dc.date.available2025-01-26T10:02:05Z-
dc.date.issued2017-03-23-
dc.identifier.citationJ. Math. Anal. Appl. 452 (2017) 1101–1127es
dc.identifier.issnPrint: 0022-247X-
dc.identifier.issnElectronic: 1096-0813-
dc.identifier.urihttp://hdl.handle.net/10201/149289-
dc.description© 2017 Elsevier Inc. All rights reserved. This document is the Published version of a Published Work that appeared in final form in Journal of Mathematical Analysis and Applications. To access the final edited and published work see https://doi.org/10.1016/j.jmaa.2017.03.048-
dc.description.abstractLocally L0-convex modules were introduced in Filipovic et al. (2009) [10] as the analytic basis for the study of conditional risk measures. Later, the algebra of conditional sets was introduced in Drapeau et al. (2016) [8]. In this paper we study locally L0-convex modules, and find exactly which subclass of locally L0-convex modules can be identified with the class of locally convex vector spaces within the context of conditional set theory. Second, we provide a version of the classical James’ theorem of characterization of weak compactness for conditional Banach spaces. Finally, we state a conditional version of the Fatou and Lebesgue properties for conditional convex risk measures and, as application of the developed theory, we establish a version of the so-called Jouini–Schachermayer–Touzi theorem for robust representation of conditional convex risk measures defined on a L∞-type module.-
dc.formatapplication/pdfes
dc.languageenges
dc.publisherElsevier-
dc.relationPartially supported by Ministerio de Economía y Competitividad and FEDER project MTM2014-57838-C2-1-P; and Fundación Séneca CARM, project 19368/PI/14. The second author was partially supported by the grant MINECO MTM2014-57838-C2-1-P.es
dc.rightsinfo:eu-repo/semantics/embargoedAccesses
dc.subjectStability properties-
dc.subjectLocally L0-convex module-
dc.subjectConditionally locally convex space-
dc.subjectJames’ compactness theorem-
dc.subjectJouini–Schachermayer–Touzi-
dc.subjectTheorem-
dc.titleStability in locally L0-convex modules and a conditional version of James' compactness theoremes
dc.typeinfo:eu-repo/semantics/articlees
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0022247X17302998?via%3Dihub-
dc.embargo.termsSi-
dc.identifier.doihttps://doi.org/10.1016/j.jmaa.2017.03.048-
dc.contributor.departmentDepartamento de Estadística e Investigación Operativa-
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
2017-JMAA-Vol452-No2-1101-1127.pdfStability in Locally L0-Convex Modules and a Conditional Version of James' Compactness Theorem643,57 kBAdobe PDFVista previa
Visualizar/Abrir    Solicitar una copia


Los ítems de Digitum están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.