Por favor, use este identificador para citar o enlazar este ítem:
https://doi.org/10.1016/j.jmaa.2017.03.048


Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Orihuela Calatayud, José | - |
dc.contributor.author | Zapata García, José Miguel | - |
dc.date.accessioned | 2025-01-26T10:02:05Z | - |
dc.date.available | 2025-01-26T10:02:05Z | - |
dc.date.issued | 2017-03-23 | - |
dc.identifier.citation | J. Math. Anal. Appl. 452 (2017) 1101–1127 | es |
dc.identifier.issn | Print: 0022-247X | - |
dc.identifier.issn | Electronic: 1096-0813 | - |
dc.identifier.uri | http://hdl.handle.net/10201/149289 | - |
dc.description | © 2017 Elsevier Inc. All rights reserved. This document is the Published version of a Published Work that appeared in final form in Journal of Mathematical Analysis and Applications. To access the final edited and published work see https://doi.org/10.1016/j.jmaa.2017.03.048 | - |
dc.description.abstract | Locally L0-convex modules were introduced in Filipovic et al. (2009) [10] as the analytic basis for the study of conditional risk measures. Later, the algebra of conditional sets was introduced in Drapeau et al. (2016) [8]. In this paper we study locally L0-convex modules, and find exactly which subclass of locally L0-convex modules can be identified with the class of locally convex vector spaces within the context of conditional set theory. Second, we provide a version of the classical James’ theorem of characterization of weak compactness for conditional Banach spaces. Finally, we state a conditional version of the Fatou and Lebesgue properties for conditional convex risk measures and, as application of the developed theory, we establish a version of the so-called Jouini–Schachermayer–Touzi theorem for robust representation of conditional convex risk measures defined on a L∞-type module. | - |
dc.format | application/pdf | es |
dc.language | eng | es |
dc.publisher | Elsevier | - |
dc.relation | Partially supported by Ministerio de Economía y Competitividad and FEDER project MTM2014-57838-C2-1-P; and Fundación Séneca CARM, project 19368/PI/14. The second author was partially supported by the grant MINECO MTM2014-57838-C2-1-P. | es |
dc.rights | info:eu-repo/semantics/embargoedAccess | es |
dc.subject | Stability properties | - |
dc.subject | Locally L0-convex module | - |
dc.subject | Conditionally locally convex space | - |
dc.subject | James’ compactness theorem | - |
dc.subject | Jouini–Schachermayer–Touzi | - |
dc.subject | Theorem | - |
dc.title | Stability in locally L0-convex modules and a conditional version of James' compactness theorem | es |
dc.type | info:eu-repo/semantics/article | es |
dc.relation.publisherversion | https://www.sciencedirect.com/science/article/pii/S0022247X17302998?via%3Dihub | - |
dc.embargo.terms | Si | - |
dc.identifier.doi | https://doi.org/10.1016/j.jmaa.2017.03.048 | - |
dc.contributor.department | Departamento de Estadística e Investigación Operativa | - |
Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2017-JMAA-Vol452-No2-1101-1127.pdf | Stability in Locally L0-Convex Modules and a Conditional Version of James' Compactness Theorem | 643,57 kB | Adobe PDF | ![]() Visualizar/Abrir Solicitar una copia |
Los ítems de Digitum están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.