Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.1016/j.jalgebra.2020.06.014

Título: Phantom covering ideals in categories without enough projective morphisms
Fecha de defensa / creación: 15-nov-2020
Editorial: Elsevier
Cita bibliográfica: Jounal of Algebra, 2020, Vol. 562, pp. 94-114
ISSN: Print: 0021-8693
Electronic: 1090-266X
Materias relacionadas: CDU::5 - Ciencias puras y naturales
Palabras clave: Quasi coherent sheaf
Phantom map
Cover
Geometrical pure injective
Resumen: We give sufficient conditions to ensure that the ideal of -phantom maps in a locally λ-presentable exact category is a (special) (pre)covering ideal, where is an exact substructure of . As a byproduct, we infer the existence of various covering ideals in categories of sheaves which have a meaningful geometrical motivation. In particular, we deal with a Zariski-local notion of phantom maps in categories of sheaves. We would like to point out that our approach is necessarily different from [18], as the categories involved in most of the examples we are interested in, do not have enough projective morphisms.
Autor/es principal/es: Estrada Domínguez, Sergio
Guil Asensio, Pedro Antonio
Odabasi, Sinem
Versión del editor: https://www.sciencedirect.com/science/article/pii/S0021869320303148?via%3Dihub
URI: http://hdl.handle.net/10201/149013
DOI: https://doi.org/10.1016/j.jalgebra.2020.06.014
Tipo de documento: info:eu-repo/semantics/article
Número páginas / Extensión: 18
Derechos: info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Descripción: © 2020 Elsevier Inc. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Algebra. To access the final edited and published work see https://doi.org/10.1016/j.jalgebra.2020.06.014
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
1607.06529v2.pdf246,26 kBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons