Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.1021/acsmaterialslett.1c00550

Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorPalacios-Lidon, Elisa-
dc.contributor.authorColchero, Jaime-
dc.contributor.authorOrtuño, Miguel-
dc.contributor.authorColom, Eduardo-
dc.contributor.authorBenito, Ana M.-
dc.contributor.authorMaser, Wolfgang-
dc.contributor.authorSomoza, Andres M.-
dc.date.accessioned2025-01-20T18:15:48Z-
dc.date.available2025-01-20T18:15:48Z-
dc.date.issued2021-11-22-
dc.identifier.citationMaterials Letters 3(12): 1826-1831 (2021)es
dc.identifier.issnPrint: 0167-577X-
dc.identifier.issnElectronic: 1873-4979-
dc.identifier.urihttp://hdl.handle.net/10201/148847-
dc.description©2021. This manuscript version is made available under the CC-BY 4.0 license http://creativecommons.org/licenses/by/4.0/ This document is the Published version of a Published Work that appeared in final form in Materials Letters. To access the final edited and published work see https://doi.org/10.1021/acsmaterialslett.1c00550-
dc.description.abstractGraphene oxide (GO) is widely used as a component in thin film optoelectronic device structures for practical reasons because its electronic and optical properties can be controlled. Progress critically depends on elucidating the nanoscale electronic structure of GO. However, direct experimental access is challenging because of its disordered and nonconductive character. Here, we quantitatively mapped the nanoscopic charge distribution and charge dynamics of an individual GO sheet by using Kelvin probe force microscopy (KPFM). Charge domains are identified, presenting important charge interactions below distances of 20 nm. Charge dynamics with very long relaxation times of at least several hours and a logarithmic decay of the time correlation function are in excellent agreement with Monte Carlo simulations, revealing an universal hopping transport mechanism best described by Efros–Shklovskii’s law.es
dc.formatapplication/pdfes
dc.format.extent6es
dc.languageenges
dc.publisherACS Publicationses
dc.relationThis research was financed by the Ministerio de Ciencia eInnovació n and the Agencia Estatal de Investigació n(MICINN/AEI, Spain) and associated Funds of the EuropeanUnion through the projects “Nano and Meso Scales:Modelling, Structure and Characterization” (PID2019-104272RB-C52/AEI/10.13039/501100011033 and “Photo-electrochemical hydrogen production by optimized graphene-based interfaces” (PID2019-104272RB-C51/AEI/10.13039/501100011033) and the Fundació n Sé neca through theprojects 19907/GERM/15 and 20860/PI/18, as well as theGobierno de Aragó n (Grupo Reconocido DGA-T03_20R)es
dc.relation.isreplacedbyhttp://hdl.handle.net/10261/255896es
dc.rightsinfo:eu-repo/semantics/openAccesses
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectMonte Carlo simulations Graphene oxide (GO) KPFMes
dc.titleNanoscale charge density and dynamics in graphene oxidees
dc.typeinfo:eu-repo/semantics/annotationes
dc.relation.publisherversionhttp://dx.doi.org/10.1021/acsmaterialslett.1c00550es
dc.identifier.doihttps://doi.org/10.1021/acsmaterialslett.1c00550-
dc.contributor.departmentDepartamento de Física-
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
Aportación3.pdfmain text8,34 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons