Por favor, use este identificador para citar o enlazar este ítem:
https://doi.org/10.1021/acsmaterialslett.1c00550


Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Palacios-Lidon, Elisa | - |
dc.contributor.author | Colchero, Jaime | - |
dc.contributor.author | Ortuño, Miguel | - |
dc.contributor.author | Colom, Eduardo | - |
dc.contributor.author | Benito, Ana M. | - |
dc.contributor.author | Maser, Wolfgang | - |
dc.contributor.author | Somoza, Andres M. | - |
dc.date.accessioned | 2025-01-20T18:15:48Z | - |
dc.date.available | 2025-01-20T18:15:48Z | - |
dc.date.issued | 2021-11-22 | - |
dc.identifier.citation | Materials Letters 3(12): 1826-1831 (2021) | es |
dc.identifier.issn | Print: 0167-577X | - |
dc.identifier.issn | Electronic: 1873-4979 | - |
dc.identifier.uri | http://hdl.handle.net/10201/148847 | - |
dc.description | ©2021. This manuscript version is made available under the CC-BY 4.0 license http://creativecommons.org/licenses/by/4.0/ This document is the Published version of a Published Work that appeared in final form in Materials Letters. To access the final edited and published work see https://doi.org/10.1021/acsmaterialslett.1c00550 | - |
dc.description.abstract | Graphene oxide (GO) is widely used as a component in thin film optoelectronic device structures for practical reasons because its electronic and optical properties can be controlled. Progress critically depends on elucidating the nanoscale electronic structure of GO. However, direct experimental access is challenging because of its disordered and nonconductive character. Here, we quantitatively mapped the nanoscopic charge distribution and charge dynamics of an individual GO sheet by using Kelvin probe force microscopy (KPFM). Charge domains are identified, presenting important charge interactions below distances of 20 nm. Charge dynamics with very long relaxation times of at least several hours and a logarithmic decay of the time correlation function are in excellent agreement with Monte Carlo simulations, revealing an universal hopping transport mechanism best described by Efros–Shklovskii’s law. | es |
dc.format | application/pdf | es |
dc.format.extent | 6 | es |
dc.language | eng | es |
dc.publisher | ACS Publications | es |
dc.relation | This research was financed by the Ministerio de Ciencia eInnovació n and the Agencia Estatal de Investigació n(MICINN/AEI, Spain) and associated Funds of the EuropeanUnion through the projects “Nano and Meso Scales:Modelling, Structure and Characterization” (PID2019-104272RB-C52/AEI/10.13039/501100011033 and “Photo-electrochemical hydrogen production by optimized graphene-based interfaces” (PID2019-104272RB-C51/AEI/10.13039/501100011033) and the Fundació n Sé neca through theprojects 19907/GERM/15 and 20860/PI/18, as well as theGobierno de Aragó n (Grupo Reconocido DGA-T03_20R) | es |
dc.relation.isreplacedby | http://hdl.handle.net/10261/255896 | es |
dc.rights | info:eu-repo/semantics/openAccess | es |
dc.rights | Atribución 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Monte Carlo simulations Graphene oxide (GO) KPFM | es |
dc.title | Nanoscale charge density and dynamics in graphene oxide | es |
dc.type | info:eu-repo/semantics/annotation | es |
dc.relation.publisherversion | http://dx.doi.org/10.1021/acsmaterialslett.1c00550 | es |
dc.identifier.doi | https://doi.org/10.1021/acsmaterialslett.1c00550 | - |
dc.contributor.department | Departamento de Física | - |
Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Aportación3.pdf | main text | 8,34 MB | Adobe PDF | ![]() Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons