Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.1038/s41592-021-01275-4

Título: Deep learning improves macromolecule identification in 3D cellular cryo-electron tomograms
Fecha de publicación: 21-oct-2021
Editorial: Nature Research
Cita bibliográfica: Nature Methods 18, 1386–1394 (2021)
ISSN: Print: 1548-7091
Electronic: 1548-7105
Palabras clave: Cryoelectron microscopy
Image processing
Resumen: Cryogenic electron tomography (cryo-ET) visualizes the 3D spatial distribution of macromolecules at nanometer resolution inside native cells. However, automated identification of macromolecules inside cellular tomograms is challenged by noise and reconstruction artifacts, as well as the presence of many molecular species in the crowded volumes. Here, we present DeepFinder, a computational procedure that uses artificial neural networks to simultaneously localize multiple classes of macromolecules. Once trained, the inference stage of DeepFinder is faster than template matching and performs better than other competitive deep learning methods at identifying macromolecules of various sizes in both synthetic and experimental datasets. On cellular cryo-ET data, DeepFinder localized membrane-bound and cytosolic ribosomes (roughly 3.2 MDa), ribulose 1,5-bisphosphate carboxylase–oxygenase (roughly 560 kDa soluble complex) and photosystem II (roughly 550 kDa membrane complex) with an accuracy comparable to expert-supervised ground truth annotations. DeepFinder is therefore a promising algorithm for the semiautomated analysis of a wide range of molecular targets in cellular tomograms.
Autor/es principal/es: Moebel, Emmanuel
Martínez Sánchez, Antonio
Lamm, Lorenz
Righetto, Ricardo
Wietrzynski, Wojciech
Albert, Sahradha
Lariviere, Damien
Fourmentin, Eric
Pfeffer, Stefan
Ortiz, Julio
Baumeister, Wolfgang
Peng, Tingying
Engel, Benjamin
Kervrann, Charles
Versión del editor: https://www.nature.com/articles/s41592-021-01275-4#citeas
URI: http://hdl.handle.net/10201/148763
DOI: https://doi.org/10.1038/s41592-021-01275-4
Tipo de documento: info:eu-repo/semantics/article
Número páginas / Extensión: 31
Derechos: info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Descripción: © 2021, The Author(s), under exclusive licence to Springer Nature America, Inc. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/. This document is the Accepted version of a Published Work that appeared in final form in Nature Methods. To access the final edited and published work see https://doi.org/10.1038/s41592-021-01275-4
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
Moebel_NatMethods_2021_accepted.pdf19,95 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons