Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.1038/s41592-019-0675-5

Título: Template-free detection and classification of membrane-bound complexes in cryo-electron tomograms
Fecha de publicación: 6-ene-2020
Editorial: Nature Research
Cita bibliográfica: Nature Methods 17, 209–216 (2020)
ISSN: Print: 1548-7091
Electronic: 1548-7105
Resumen: With faithful sample preservation and direct imaging of fully hydrated biological material, cryo-electron tomography provides an accurate representation of molecular architecture of cells. However, detection and precise localization of macromolecular complexes within cellular environments is aggravated by the presence of many molecular species and molecular crowding. We developed a template-free image processing procedure for accurate tracing of complex networks of densities in cryo-electron tomograms, a comprehensive and automated detection of heterogeneous membrane-bound complexes and an unsupervised classification (PySeg). Applications to intact cells and isolated endoplasmic reticulum (ER) allowed us to detect and classify small protein complexes. This classification provided sufficiently homogeneous particle sets and initial references to allow subsequent de novo subtomogram averaging. Spatial distribution analysis showedthat ER complexes have different localization patterns forming nanodomains. Therefore this procedure allows a comprehensive detection and structural analysis of complexes in situ.
Autor/es principal/es: Martínez Sánchez, Antonio
Kochovsk, Zdravko
Laugks, Ulrike
Meyer zum Alten Borgloh, Johannes
Chakraborty, Saikat
Pfeffer, Stefan
Baumeister, Wolfgang
Lucic, Vladan
Versión del editor: https://www.nature.com/articles/s41592-019-0675-5
URI: http://hdl.handle.net/10201/148762
DOI: https://doi.org/10.1038/s41592-019-0675-5
Tipo de documento: info:eu-repo/semantics/article
Número páginas / Extensión: 32
Derechos: info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Descripción: © 2020, The Author(s), under exclusive licence to Springer Nature America, Inc. 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/. This document is the Accepted version of a Published Work that appeared in final form in Nature Methods. To access the final edited and published work see https://doi.org/10.1038/s41592-019-0675-5
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
Martinez-Sanchez_NatMethods_2020_accepted.pdf17,44 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons