Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.3390/w13020222

Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorRuiz-Álvarez, Marcos-
dc.contributor.authorGomariz Castillo, Francisco-
dc.contributor.authorAlonso Sarria, Francisco-
dc.date.accessioned2024-12-27T09:58:21Z-
dc.date.available2024-12-27T09:58:21Z-
dc.date.issued2021-01-18-
dc.identifier.citationWater, 13(2), 222, 2021es
dc.identifier.issnElectronic: 2073-4441-
dc.identifier.urihttp://hdl.handle.net/10201/147822-
dc.description© 2021 by the authors. This manuscript version is made available under the CC-BY 4.0 license http://creativecommons.org/licenses/by/4.0/. This document is the Published version of a Published Work that appeared in final form in Water. To access the final edited and published work see https://doi.org/10.3390/w13020222-
dc.description.abstractLarge ensembles of climate models are increasingly available either as ensembles of opportunity or perturbed physics ensembles, providing a wealth of additional data that is potentially useful for improving adaptation strategies to climate change. In this work, we propose a framework to evaluate the predictive capacity of 11 multi-model ensemble methods (MMEs), including random forest (RF), to estimate reference evapotranspiration (ET0) using 10 AR5 models for the scenarios RCP4.5 and RCP8.5. The study was carried out in the Segura Hydrographic Demarcation (SE of Spain), a typical Mediterranean semiarid area. ET0 was estimated in the historical scenario (1970–2000) using a spatially calibrated Hargreaves model. MMEs obtained better results than any individual model for reproducing daily ET0. In validation, RF resulted more accurate than other MMEs (Kling–Gupta efficiency (KGE) 𝑀=0.903, 𝑆𝐷=0.034 for KGE and 𝑀=3.17, 𝑆𝐷=2.97 for absolute percent bias). A statistically significant positive trend was observed along the 21st century for RCP8.5, but this trend stabilizes in the middle of the century for RCP4.5. The observed spatial pattern shows a larger ET0 increase in headwaters and a smaller increase in the coast.es
dc.formatapplication/pdfes
dc.format.extent27es
dc.languageenges
dc.publisherMDPIes
dc.relationThis research was funded by Spanish Ministry of Economy, Industry and Competitiveness/Agencia Estatal de Investigación/FEDER (Fondo Europeo de Desarrollo Regional) grant number CGL2017-84625-C2-2-R.es
dc.rightsinfo:eu-repo/semantics/openAccesses
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectRandom forest regressiones
dc.subjectReference evapotranspirationes
dc.subjectMulti-model ensembleses
dc.subjectClimate changees
dc.subjectFifth assessment reportes
dc.subjectRandom forest regression kriginges
dc.subjectKling–Gupta efficiencyes
dc.subject.otherCDU::9 - Geografía e historiaes
dc.titleEvapotranspiration response to climate change in semi-arid areas: using random forest as multi-model ensemble methodes
dc.typeinfo:eu-repo/semantics/articlees
dc.relation.publisherversionhttps://www.mdpi.com/2073-4441/13/2/222es
dc.identifier.doihttps://doi.org/10.3390/w13020222-
dc.contributor.departmentDepartamento de Geografía-
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
2021_RuizAlvarez_etal.pdf4,54 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons