Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.3390/rs13091770

Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorValdivieso Ros, Carmen-
dc.contributor.authorAlonso Sarria, Francisco-
dc.contributor.authorGomariz Castillo, Francisco-
dc.date.accessioned2024-12-27T09:53:51Z-
dc.date.available2024-12-27T09:53:51Z-
dc.date.issued2021-05-01-
dc.identifier.citationRemote Sensing, 13, 1770, 2021es
dc.identifier.issnElectronic: 2073-4441-
dc.identifier.urihttp://hdl.handle.net/10201/147821-
dc.description© 2021 by the authors. This manuscript version is made available under the CC-BY 4.0 license http://creativecommons.org/licenses/by/4.0/. This document is the Published version of a Published Work that appeared in final form in Water. To access the final edited and published work see https://doi.org/10.3390/rs13091770-
dc.description.abstractMulti-temporal imagery classification using spectral information and indices with random forest allows improving accuracy in land use and cover classification in semiarid Mediterranean areas where the high fragmentation of the landscape caused by multiple factors complicates the task. Hence, since data come from different dates, atmospheric correction is needed to retrieve surface reflectivity values. The Sen2Cor, MAJA and ACOLITE algorithms have proven their good performances in these areas in different comparative studies, and DOS is a basic method that is widely used. The aim in this study was to test the feasibility of its application to the data set to improve the values of accuracy in classification and the performance in properly labelling different classes. Additionally, we tried to correct accuracy and separability mixing predictors with different algorithms. The results showed that, using a single algorithm, the general accuracy and kappa index from ACOLITE were the highest, 0.80 and 0.76, but the separability between problematic classes was slightly improved by using MAJA. Any combination of the different algorithms tested increased the values of classification, although they may help with separability between some pairs of classes.es
dc.formatapplication/pdfes
dc.format.extent23es
dc.languageenges
dc.publisherMDPIes
dc.relationThis research was funded by the Spanish Ministry of Economy, Industry and Competitiveness/Agencia Estatal de Investigación/FEDER (Fondo Europeo de Desarrollo Regional) Grant Number CGL2017-84625-C2-2-R. C.V.R. is grateful for the financing of the pre-doctoral research by the Ministerio de Ciencia, Innovación y Universidades from the Government of Spain (FPU18/01447).es
dc.rightsinfo:eu-repo/semantics/openAccesses
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectSupervised classificationes
dc.subjectAtmospheric correctiones
dc.subjectACOLITEes
dc.subjectSen2Cores
dc.subjectMAJAes
dc.subjectDOSes
dc.subjectRandom forestes
dc.subject.otherCDU::9 - Geografía e historiaes
dc.titleEffect of different atmospheric correction algorithms on Sentinel-2 imagery classification accuracy in a semiarid mediterranean areaes
dc.typeinfo:eu-repo/semantics/articlees
dc.relation.publisherversionhttps://www.mdpi.com/2072-4292/13/9/1770es
dc.identifier.doihttps://doi.org/10.3390/rs13091770-
dc.contributor.departmentDepartamento de Geografía-
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
2021-ValdiviesoRos_etal.pdfPublished version8,08 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons