Por favor, use este identificador para citar o enlazar este ítem:
https://doi.org/10.1101/gad.290940.116


Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Falletta, Paola | - |
dc.contributor.author | Sánchez del Campo Ferrer, Luis | - |
dc.contributor.author | Chauhan, Jagat | - |
dc.contributor.author | Effern, Maike | - |
dc.contributor.author | Kenyon, Amy | - |
dc.contributor.author | Kershaw, Christopher J. | - |
dc.contributor.author | Siddaway, Robert | - |
dc.contributor.author | Lisle, Richard | - |
dc.contributor.author | Freter, Rasmus | - |
dc.contributor.author | Daniels, Matthew J. | - |
dc.contributor.author | Lu, Xin | - |
dc.contributor.author | Tüting, Thomas | - |
dc.contributor.author | Middleton, Mark | - |
dc.contributor.author | Buffa, Francesca M. | - |
dc.contributor.author | Willis, Anne E. | - |
dc.contributor.author | Pavitt, Graham | - |
dc.contributor.author | Ronai, Ze’ev A. | - |
dc.contributor.author | Sauka Spengler, Tatjana | - |
dc.contributor.author | Hölzel, Michael | - |
dc.contributor.author | Goding, Colin R. | - |
dc.date.accessioned | 2024-12-10T09:15:52Z | - |
dc.date.available | 2024-12-10T09:15:52Z | - |
dc.date.issued | 2017-01-17 | - |
dc.identifier.citation | Genes & Development, 2017, Vol. 31, pp. 18-33 | es |
dc.identifier.issn | Print: 0890-9369 | - |
dc.identifier.issn | Electronic: 1549-5477 | - |
dc.identifier.uri | http://hdl.handle.net/10201/147268 | - |
dc.description | © 2017 Falletta et al. This manuscript version is made available under the CC-BY-NC-4.0 license http://creativecommons.org/licenses/by-nc/4.0/ This document is the Published version of a Published Work that appeared in final form in Genes & Development. To access the final edited and published work see https://doi.org/10.1101/gad.290940.116 | es |
dc.description.abstract | The intratumor microenvironment generates phenotypically distinct but interconvertible malignant cell subpopulations that fuel metastatic spread and therapeutic resistance. Whether different microenvironmental cues impose invasive or therapy-resistant phenotypes via a common mechanism is unknown. In melanoma, low expression of the lineage survival oncogene microphthalmia-associated transcription factor (MITF) correlates with invasion, senescence, and drug resistance. However, how MITF is suppressed in vivo and how MITF-low cells in tumors escape senescence are poorly understood. Here we show that microenvironmental cues, including inflammation-mediated resistance to adoptive T-cell immunotherapy, transcriptionally repress MITF via ATF4 in response to inhibition of translation initiation factor eIF2B. ATF4, a key transcription mediator of the integrated stress response, also activates AXL and suppresses senescence to impose the MITF-low/AXL-high drug-resistant phenotype observed in human tumors. However, unexpectedly, without translation reprogramming an ATF4-high/MITF-low state is insufficient to drive invasion. Importantly, translation reprogramming dramatically enhances tumorigenesis and is linked to a previously unexplained gene expression program associated with anti-PD-1 immunotherapy resistance. Since we show that inhibition of eIF2B also drives neural crest migration and yeast invasiveness, our results suggest that translation reprogramming, an evolutionarily conserved starvation response, has been hijacked by microenvironmental stress signals in melanoma to drive phenotypic plasticity and invasion and determine therapeutic outcome. | es |
dc.format | application/pdf | es |
dc.format.extent | 16 | es |
dc.language | eng | es |
dc.publisher | Cold Spring Harbor Laboratory Press | es |
dc.relation | Ámbito del proyecto: Internacional, Europeo, nacional y regional. Agencia financiadora: National Institutes of Health, Fundación Seneca, Ministerio de Economia y Competitividad, Deutsche Forschungsgemeinschaft, Medical Research Council, Oxford Biomedical Research Centre, Biotechnology and Biological Sciences Research Council, Wellcome Trust, National Cancer Institute, Cancer Research UK, Oxford National Institute for Health Research Biomedical Research Centre Código o número del acuerdo de subvención: P01 CA128814/CA/NCI NIH HHS/United States, WT098519MA/WT_/Wellcome Trust/United Kingdom, C5255/A15935/CRUK_/Cancer Research UK/United Kingdom, 23969/CRUK_/Cancer Research UK/United Kingdom, MC_UP_A600_1023/MRC_/Medical Research Council/United Kingdom, G0902418/MRC_/Medical Research Council/United Kingdom, C5255/A18085/CRUK_/Cancer Research UK/United Kingdom, WT_/Wellcome Trust/United Kingdom, BB/M006565/1/BB_/Biotechnology and Biological Sciences Research Council/United Kingdom, SAF2013-48375-C2-1-R, HO4281/2-1, | es |
dc.rights | info:eu-repo/semantics/openAccess | es |
dc.rights | Atribución-NoComercial 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.subject | Melanoma | es |
dc.subject | Glutamine | es |
dc.subject | Phenotypic plasticity | es |
dc.subject | ER Stress | es |
dc.subject | MITF | es |
dc.subject | ATF4 | es |
dc.subject | Tumor microenvironment | es |
dc.title | Translation reprogramming is an evolutionarily conserved driver of phenotypic plasticity and therapeutic resistance in melanoma | es |
dc.type | info:eu-repo/semantics/article | es |
dc.relation.publisherversion | https://genesdev.cshlp.org/content/31/1/18 | es |
dc.identifier.doi | https://doi.org/10.1101/gad.290940.116 | - |
dc.contributor.department | Departamento de Bioquímica y Biología Molecular A | es |
Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
18.pdf | 705,29 kB | Adobe PDF | ![]() Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons