Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.1109/ACCESS.2018.2803446

Título: A self-adaptive deep learning-based system for anomaly detection in 5G networks
Fecha de publicación: 7-feb-2018
Editorial: IEEE
Cita bibliográfica: IEEE Access, Volume: 6, 2018
Palabras clave: 5G
anomaly detection
Botnets
Deep learning
Performance evaluation
Resumen: The upcoming fifth-generation (5G) mobile technology, which includes advanced communication features, is posing new challenges on cybersecurity defense systems. Although innovative approaches have evolved in the last few years, 5G will make existing intrusion detection and defense procedures become obsolete, in case they are not adapted accordingly. In this sense, this paper proposes a novel 5G-oriented cyberdefense architecture to identify cyberthreats in 5G mobile networks efficient and quickly enough. For this, our architecture uses deep learning techniques to analyze network traffic by extracting features from network flows. Moreover, our proposal allows adapting, automatically, the configuration of the cyberdefense architecture in order to manage traffic fluctuation, aiming both to optimize the computing resources needed in each particular moment and to fine tune the behavior and the performance of analysis and detection processes. Experiments using a well-known botnet data set depict how a neural network model reaches a sufficient classification accuracy in our anomaly detection system. Extended experiments using diverse deep learning solutions analyze and determine their suitability and performance for different network traffic loads. The experimental results show how our architecture can self-adapt the anomaly detection system based on the volume of network flows gathered from 5G subscribers' user equipments in real-time and optimizing the resource consumption.
Autor/es principal/es: Fernández Maimó, Lorenzo
Perales Gómez, Ángel Luis
García Clemente, Félix J.
Gil Pérez, Manuel
Martínez Pérez, Gregorio
Versión del editor: https://ieeexplore.ieee.org/document/8283694
URI: http://hdl.handle.net/10201/142750
DOI: https://doi.org/10.1109/ACCESS.2018.2803446
Tipo de documento: info:eu-repo/semantics/article
Número páginas / Extensión: 13
Derechos: info:eu-repo/semantics/openAccess
Atribución-CompartirIgual 4.0 Internacional
Descripción: © 2018 IEEE. This document is made available under the CC-BY-SA 4.0 license http://creativecommons.org/licenses/by-sa/4.0/ This document is the published version of a published work that appeared in final form in IEEE Access. To access the final work, see DOI: https://doi.org/10.1109/ACCESS.2018.2803446
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
A_Self-Adaptive_Deep_Learning-Based_System_for_Anomaly_Detection_in_5G_Networks.pdf5,7 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons