Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.1109/tmi.2024.3398401

Título: Simulating the cellular context in synthetic datasets for cryo-electron tomography
Fecha de publicación: 8-may-2024
Editorial: Institute of Electrical and Electronics Engineers
Cita bibliográfica: IEEE Transactions on Medical Imaging, Vol. XX, N. XX, XXXX 2023
ISSN: Print: 0278-0062
Electronic: 1558-254X
Palabras clave: Cryo Electron Tomography
Deep learning
Image processing
Scientific Computation
Synthetic data generation
Resumen: Cryo-electron tomography (cryo-ET) allows to visualize the cellular context at macromolecular level. To date, the impossibility of obtaining a reliable ground truth is limiting the application of deep learning-based image processing algorithms in this field. As a consequence, there is a growing demand of realistic synthetic datasets for training deep learning algorithms. In addition, besides assisting the acquisition and interpretation of experimental data, synthetic tomograms are used as reference models for cellular organization analysis from cellular tomograms. Current simulators in cryo-ET focus on reproducing distortions from image acquisition and tomogram reconstruction, however, they can not generate many of the low order features present in cellular tomograms. Here we propose several geometric and organization models to simulate low order cellular structures imaged by cryo-ET. Specifically, clusters of any known cytosolic or membrane bound macromolecules, membranes with different geometries as well as different filamentous structures such as microtubules or actin-like networks. Moreover, we use parametrizable stochastic models to generate a high diversity of geometries and organizations to simulate representative and generalized datasets, including very crowded environments like those observed in native cells. These models have been implemented in a multiplatform open-source Python package, including scripts to generate cryo-tomograms with adjustable sizes and resolutions. In addition, these scripts provide also distortion-free density maps besides the ground truth in different file formats for efficient access and advanced visualization. We show that such a realistic synthetic dataset can be readily used to train generalizable deep learning algorithms.
Autor/es principal/es: Martinez-Sánchez, Antonio
Lamm, Lorenz
Jasnin, Marion
Phelippeau, Harold
Facultad/Departamentos/Servicios: Facultades, Departamentos, Servicios y Escuelas::Departamentos de la UMU::Ingeniería de la Información y las Comunicaciones
URI: http://hdl.handle.net/10201/141860
DOI: https://doi.org/10.1109/tmi.2024.3398401
Tipo de documento: info:eu-repo/semantics/article
Número páginas / Extensión: 13
Derechos: info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Descripción: © 2023. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ This document is the Accepted version of a Published Work that appeared in final form in IEEE Transactions on Medical Imaging. To access the final edited and published work see https://doi.org/10.1109/tmi.2024.3398401
Aparece en las colecciones:Artículos: Ingeniería de la Información y las Comunicaciones

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
TMI3398401_IEEE_accepted_version.pdfVersion aceptada34,53 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons