Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.1016/j.apenergy.2024.122725

Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorÁlvarez Díez, Susana-
dc.contributor.authorBaixauli Soler, Juan Samuel-
dc.contributor.authorLozano Reina, Gabriel-
dc.contributor.authorRodríguez Linares Rey, Diego-
dc.contributor.otherFacultades, Departamentos, Servicios y Escuelas::Departamentos de la UMU::Organización de Empresas y Finanzases
dc.contributor.otherFacultades, Departamentos, Servicios y Escuelas::Departamentos de la UMU::Métodos Cuantitativos para la Economía y la Empresaes
dc.date.accessioned2024-03-18T11:02:27Z-
dc.date.available2024-03-18T11:02:27Z-
dc.date.issued2024-04-01-
dc.identifier.citationApplied Energy Volume 359, 1 April 2024, 122725es
dc.identifier.issnPrint: 0306-2619-
dc.identifier.issnElectronic: 1872-9118-
dc.identifier.urihttp://hdl.handle.net/10201/140282-
dc.description© 2024. The authors. This document is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0 This document is the published version of a published work that appeared in final form in REVISTA. To access the final work, see DOI: https://doi.org/10.1016/j.apenergy.2024.122725es
dc.description.abstractInvesting in energy efficiency measures is a major challenge for SMEs, both for environmental and economic reasons. However, certain barriers often make it difficult to invest in such measures. Although public financial support helps to overcome economic barriers, public bodies face the challenge of identifying which SMEs display the greatest potential to invest in energy efficiency measures. By applying a random forest technique and by using sampling balancing techniques, this paper identifies the profile of industrial SMEs that might be potential beneficiaries of public aid, thereby helping public institutions to target their calls and direct their efforts towards this group of SMEs. Specifically, liquidity and indebtedness are found to be the most useful predictors for SMEs in the industrial sector. The results are robust and reveal that applying a random forest approach for unbalanced samples offers greater predictive capacity and statistical power than applying traditional estimation techniques. By identifying potentially benefiting firms, this work helps to boost the effectiveness of public subsidies and to improve the channeling of public funds, which ultimately favors investment in energy efficiency.es
dc.formatapplication/pdfes
dc.format.extent15es
dc.languageenges
dc.publisherElsevier Ltd.es
dc.relationThis work was supported by the Fundación Cajamurcia.es
dc.rightsinfo:eu-repo/semantics/openAccesses
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectEnergy efficiencyes
dc.subjectPublic investment subsidieses
dc.subjectSMEses
dc.subjectRandom forestes
dc.subjectUnbalanced sampleses
dc.titleSubsidies for investing in energy efficiency measures: Applying a random forest model for unbalanced sampleses
dc.typeinfo:eu-repo/semantics/articlees
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0306261924001089?via%3Dihubes
dc.identifier.doihttps://doi.org/10.1016/j.apenergy.2024.122725-
dc.contributor.departmentDepartamento de Organización de Empresas y Finanzas-
dc.contributor.departmentDepartamento de Métodos Cuantitativos para la Economía y la Empresa-
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
Álvarez Díez et al. (2024) Applied Energy.pdf1,42 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons