Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.1016/j.jmaa.2021.125442

Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorRaja Baño, Matías-
dc.contributor.authorGrelier, Guillaume Guy Marcel-
dc.date.accessioned2024-02-20T08:02:12Z-
dc.date.available2024-02-20T08:02:12Z-
dc.date.issued2022-
dc.identifier.citationJournal of Mathematical Analysis and Applications 505 (2022) 125442es
dc.identifier.issnPrint: 0022-247X-
dc.identifier.issnElectronic: 1096-0813-
dc.identifier.urihttp://hdl.handle.net/10201/139541-
dc.descriptionAcceso restringido-
dc.description.abstractNon-convex functions that yet satisfy a condition of uniform convexity for non-close points can arise in discrete constructions. We prove that this sort of discrete uniform convexity is inherited by the convex envelope, which is the key to obtain other remarkable properties such as the coercivity. Our techniques allow to retrieve Enflo’s uniformly convex renorming of super-reflexive Banach spaces as the regularization of a raw function built from trees. Among other applications, we provide a sharp estimation of the distance of a given function to the set of differences of Lipschitz convex functions. Finally, we prove the equivalence of several possible ways to quantify the super weakly noncompactness of a convex subset of a Banach space.es
dc.formatapplication/pdfes
dc.format.extent25es
dc.languageenges
dc.publisherElsevier-
dc.relationThis research has been supported by the Grants of Ministerio de Economía, Industria y Competitividad MTM2017-83262-C2-2-P; and Fundación Séneca Región de Murcia 20906/PI/18.es
dc.rightsinfo:eu-repo/semantics/openAccesses
dc.subjectUniform convexityen
dc.subjectSuper weak compactnessen
dc.subject.otherCDU::5 - Ciencias puras y naturales::51 - Matemáticas::517 - Análisises
dc.titleOn uniformly convex functionses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doihttps://doi.org/10.1016/j.jmaa.2021.125442-
dc.contributor.departmentDepartamento de Matemáticas-
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
2022_JMAA.pdfOn uniformly convex functions538,76 kBAdobe PDFVista previa
Visualizar/Abrir    Solicitar una copia


Los ítems de Digitum están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.