Por favor, use este identificador para citar o enlazar este ítem:
https://doi.org/10.1016/j.jmaa.2021.125442


Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Raja Baño, Matías | - |
dc.contributor.author | Grelier, Guillaume Guy Marcel | - |
dc.date.accessioned | 2024-02-20T08:02:12Z | - |
dc.date.available | 2024-02-20T08:02:12Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Journal of Mathematical Analysis and Applications 505 (2022) 125442 | es |
dc.identifier.issn | Print: 0022-247X | - |
dc.identifier.issn | Electronic: 1096-0813 | - |
dc.identifier.uri | http://hdl.handle.net/10201/139541 | - |
dc.description | Acceso restringido | - |
dc.description.abstract | Non-convex functions that yet satisfy a condition of uniform convexity for non-close points can arise in discrete constructions. We prove that this sort of discrete uniform convexity is inherited by the convex envelope, which is the key to obtain other remarkable properties such as the coercivity. Our techniques allow to retrieve Enflo’s uniformly convex renorming of super-reflexive Banach spaces as the regularization of a raw function built from trees. Among other applications, we provide a sharp estimation of the distance of a given function to the set of differences of Lipschitz convex functions. Finally, we prove the equivalence of several possible ways to quantify the super weakly noncompactness of a convex subset of a Banach space. | es |
dc.format | application/pdf | es |
dc.format.extent | 25 | es |
dc.language | eng | es |
dc.publisher | Elsevier | - |
dc.relation | This research has been supported by the Grants of Ministerio de Economía, Industria y Competitividad MTM2017-83262-C2-2-P; and Fundación Séneca Región de Murcia 20906/PI/18. | es |
dc.rights | info:eu-repo/semantics/openAccess | es |
dc.subject | Uniform convexity | en |
dc.subject | Super weak compactness | en |
dc.subject.other | CDU::5 - Ciencias puras y naturales::51 - Matemáticas::517 - Análisis | es |
dc.title | On uniformly convex functions | es |
dc.type | info:eu-repo/semantics/article | es |
dc.identifier.doi | https://doi.org/10.1016/j.jmaa.2021.125442 | - |
dc.contributor.department | Departamento de Matemáticas | - |
Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2022_JMAA.pdf | On uniformly convex functions | 538,76 kB | Adobe PDF | ![]() Visualizar/Abrir Solicitar una copia |
Los ítems de Digitum están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.