Por favor, use este identificador para citar o enlazar este ítem: http://dx.doi.org/10.1016/j.carbpol.2016.12.043

Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorCollado González, María del Mar-
dc.contributor.authorMontalbán, Mercedes G.-
dc.contributor.authorPeña García, Jorge-
dc.contributor.authorPérez Sánchez, Horacio-
dc.contributor.authorVíllora, Gloria-
dc.contributor.authorDíaz Baños, F. Guillermo-
dc.contributor.otherFacultades, Departamentos, Servicios y Escuelas::Departamentos de la UMU:: Biología Celular e Histología-
dc.date.accessioned2024-02-09T20:48:18Z-
dc.date.available2024-02-09T20:48:18Z-
dc.date.issued2016-12-24-
dc.identifier.citationCarbohydrate Polymers 161, 2017: 63-70es
dc.identifier.issnPrint: 0144-8617-
dc.identifier.issnElectronic: 1879-1344-
dc.identifier.urihttp://hdl.handle.net/10201/139155-
dc.description©2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ This document is the Accepted, version of a Published Work that appeared in final form in Carbohydrate Polymers. To access the final edited and published work see http://dx.doi.org/10.1016/j.carbpol.2016.12.043-
dc.description.abstractChitosan is a biocompatible polysaccharide with positive Z potential which can stabilize negative charged nanoparticles. Silk fibroin nanoparticles and citrate gold nanoparticles, both with negative Z potential, but they form aggregates at physiological ionic strength. In this work, we study the behavior of chitosan in solution when the ionic strength of the medium is increased and how the concentration of chitosan and the proportion of the two components (chitosan and AuNP or SFN) significantly affect the stability and size of the nanocomposites formed. In addition to experimental measurements, molecular modeling were used to gain insight into how chitosan interacts with silk fibroin monomers, and to identify the main energetic interactions involved in the process. The optimum values for obtaining the smallest and most homogeneous stable nanocomposites were obtained and two different ways of organization through which chitosan may exert its stabilizing effect were suggested.es
dc.formatapplication/pdfes
dc.format.extent8es
dc.languageenges
dc.publisherElsevieres
dc.relationThis work was partially supported by the European Commission (FEDER/ERDF) and the Spanish MINECO (Ref. CTQ2011-25613 and Ref. CTQ2014-57467-R), the Seneca Foundation of Science and Technology of Murcia (Projects 19499/PI/14 and 18946/JLI/13), the supercomputing infrastructure of the NLHPC (ECM-02) and the computing facilities of Extremadura Research Centre for Advanced Technologies (CETA CIEMAT). The authors also thank- fully acknowledge the computer resources and the technical support provided by the Plataforma Andaluza de Bioinformática of the University of Málaga. Mercedes G. Montalbán acknowledges support from Spanish MINECO (FPI grant, BES-2012-053267es
dc.rightsinfo:eu-repo/semantics/openAccesses
dc.rightsAttribution-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/*
dc.subjectChitosanes
dc.subjectGold nanoparticles-
dc.subjectSilk fibroin nanoparticles-
dc.subjectAggregation-Stabilizing effect-
dc.subjectDynamic light scattering-
dc.subjectMolecular modeling-
dc.titleChitosan as stabilizing agent for negatively charged nanoparticleses
dc.typeinfo:eu-repo/semantics/articlees
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0144861716314175?via%3Dihubes
dc.identifier.doihttp://dx.doi.org/10.1016/j.carbpol.2016.12.043-
Aparece en las colecciones:Artículos: Biología Celular e Histología

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
CarbPolym2016_ColladoGonzalez.pdf754,6 kBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons