Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/10201/138724
Twittear
Título: | Automated Detection of Corneal Edema With Deep Learning-Assisted Second Harmonic Generation Microscopy |
Fecha de publicación: | 6-nov-2023 |
Editorial: | Institute of Electrical and Electronics Engineers |
Cita bibliográfica: | IEEE Journal of Selected Topics in Quantum Electronic, vol. 29, Nº 6, November/december 2023 |
ISSN: | 1077-260X 1558-4542 (eISSN) |
Materias relacionadas: | CDU::5 - Ciencias puras y naturales::53 - Física::535 - Óptica |
Palabras clave: | Corneal edema deep learning Optical imaging Optical harmonic generation Optical microscopy |
Resumen: | Second Harmonic Generation Microscopy (SHG) is widely acknowledged as a valuable non-linear optical imaging tool, its contrast mechanism providing the premises to non-invasively identify, characterize, and monitor changes in the collagen architecture of tissues.However, the interpretation ofSHGdata can pose difficulties even for experts histopathologists, which represents a bottleneck for the translation of SHG-based diagnostic frameworks to clinical settings. The use of artificial intelligence methods for automated SHG analysis is still in an early stage, with only few studies having been reported to date, none addressing ocular tissues yet. In this work we explore the use of three Deep Learning models, the highly popular InceptionV3 and ResNet50, alongside FLIMBA, a custom developed architecture, requiring no pre-training, to automatically detect corneal edema in SHG images of porcine cornea. We observe that Deep Learning models building on different architectures provide complementary results for the classification ofcornea SHG images and demonstrate an AU-ROC=0.98 for their joint use. These results have potential to be extrapolated to other diagnostics scenarios, such as automated extraction of hydration level of cornea, or identification of corneal edema causes, and thus pave the way for novel methods for precision diagnostics of the cornea with Deep-Learning assisted SHG imaging. |
Autor/es principal/es: | Anton, Stefan Martínez Ojeda, Rosa M. Hristu, Radu Stanciu, George A. Toma, Antonela Banica, Cosmin K. Fernández, Enrique J. Huttunen, Mikko J. Bueno, Juan M. Stanciu, Stefan G. |
Director/es: | Stanciu, Stefan G. Bueno, Juan M. |
Facultad/Departamentos/Servicios: | Facultades, Departamentos, Servicios y Escuelas::Departamentos de la UMU::Física |
URI: | http://hdl.handle.net/10201/138724 |
Tipo de documento: | info:eu-repo/semantics/article |
Número páginas / Extensión: | 10 |
Derechos: | info:eu-repo/semantics/embargoedAccess Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
Descripción: | ©2023. This document is the Published, version of a Published Work that appeared in final form in IEEE Journal of Selected Topics in Quantum Electronics. To access the final edited and published work see https://doi.org/10.1109/JSTQE.2023.3258687 |
Aparece en las colecciones: | Artículos: Física |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Automated_Detection_of_Corneal_Edema_With_Deep_Learning-Assisted_Second_Harmonic_Generation_Microscopy.pdf | 1,95 MB | Adobe PDF | Visualizar/Abrir Solicitar una copia |
Los ítems de Digitum están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.