Por favor, use este identificador para citar o enlazar este ítem:
https://doi.org/10.1007/978-3-031-38271-0_46


Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Caravantes, Jorge | - |
dc.contributor.author | Gema M., Diaz–Toca | - |
dc.contributor.author | Gonzalez–Vega, Laureano | - |
dc.date.accessioned | 2024-01-25T11:09:44Z | - |
dc.date.available | 2024-01-25T11:09:44Z | - |
dc.date.issued | 2023 | - |
dc.identifier.uri | http://hdl.handle.net/10201/137741 | - |
dc.description | The Author(s), under exclusive license to Springer Nature Switzerland AG 2023F. Nielsen and F. Barbaresco (Eds.): GSI 2023, LNCS 14071, pp. 465–473, 2023.https://doi.org/10.1007/978-3-031-38271-0_46 | es |
dc.description | Publicadas en cerrado | es |
dc.description.abstract | The problem of computing the topology of curves has re-ceived special attention from both Computer Aided Geometric Designand Symbolic Computation. It is well known that the general positioncondition simplifies the computation of the topology of a real algebraicplane curve defined implicitly since, under this assumption, singularpoints can be presented in a very convenient way for that purpose. Herewe will show how the topology of cubic, quartic and quintic plane curvescan be computed in the same manner even if the curve is not in gen-eral position, avoiding thus coordinate changes. This will be possibleby applying new formulae, derived from subresultants, which describemultiple roots of univariate polynomials as rational functions of the con-sidered polynomial coefficients. We will also characterize those higherdegree curves where this approach can be used and use this technique todescribe the curve arising when intersecting two ellipsoids. | es |
dc.format | application/pdf | es |
dc.format.extent | 9 | es |
dc.language | eng | es |
dc.publisher | Springer Nature | es |
dc.relation | AcknowledgementsThe authors are partially supported by the grant PID2020-113192GB-I00/AEI/ 10.13039/501100011033 (Mathematical Visualization: Foun-dations, Algorithms and Applications) from the Spanish Agencia Estatal de In-vestigación (Ministerio de Ciencia e Innovación). J. Caravantes belongs to theResearch Group ASYNACS (Ref. CT-CE2019/683) | es |
dc.relation.ispartof | 6th International Conference, GSI 2023 | es |
dc.rights | info:eu-repo/semantics/embargoedAccess | es |
dc.subject | Topology of curves | es |
dc.subject | Subresultants | es |
dc.subject | Singular points | es |
dc.subject.other | CDU::6 - Ciencias aplicadas::62 - Ingeniería. Tecnología | es |
dc.title | Avoiding the general position condition whencomputing the topology of a real algebraic planecurve defined implicitly | es |
dc.type | info:eu-repo/semantics/lecture | es |
dc.type | info:eu-repo/semantics/lecture | es |
dc.embargo.terms | Si | - |
dc.identifier.doi | https://doi.org/10.1007/978-3-031-38271-0_46 | - |
dc.contributor.department | Departamento de Ingeniería y Tecnología de Computadores | - |
Aparece en las colecciones: | Ponencias y Comunicaciones |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Avoiding the general position (versión editor).pdf | 194 kB | Adobe PDF | ![]() Visualizar/Abrir Solicitar una copia |
Los ítems de Digitum están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.