Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.1007/978-3-031-38271-0_46

Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorCaravantes, Jorge-
dc.contributor.authorGema M., Diaz–Toca-
dc.contributor.authorGonzalez–Vega, Laureano-
dc.date.accessioned2024-01-25T11:09:44Z-
dc.date.available2024-01-25T11:09:44Z-
dc.date.issued2023-
dc.identifier.urihttp://hdl.handle.net/10201/137741-
dc.descriptionThe Author(s), under exclusive license to Springer Nature Switzerland AG 2023F. Nielsen and F. Barbaresco (Eds.): GSI 2023, LNCS 14071, pp. 465–473, 2023.https://doi.org/10.1007/978-3-031-38271-0_46es
dc.descriptionPublicadas en cerradoes
dc.description.abstractThe problem of computing the topology of curves has re-ceived special attention from both Computer Aided Geometric Designand Symbolic Computation. It is well known that the general positioncondition simplifies the computation of the topology of a real algebraicplane curve defined implicitly since, under this assumption, singularpoints can be presented in a very convenient way for that purpose. Herewe will show how the topology of cubic, quartic and quintic plane curvescan be computed in the same manner even if the curve is not in gen-eral position, avoiding thus coordinate changes. This will be possibleby applying new formulae, derived from subresultants, which describemultiple roots of univariate polynomials as rational functions of the con-sidered polynomial coefficients. We will also characterize those higherdegree curves where this approach can be used and use this technique todescribe the curve arising when intersecting two ellipsoids.es
dc.formatapplication/pdfes
dc.format.extent9es
dc.languageenges
dc.publisherSpringer Naturees
dc.relationAcknowledgementsThe authors are partially supported by the grant PID2020-113192GB-I00/AEI/ 10.13039/501100011033 (Mathematical Visualization: Foun-dations, Algorithms and Applications) from the Spanish Agencia Estatal de In-vestigación (Ministerio de Ciencia e Innovación). J. Caravantes belongs to theResearch Group ASYNACS (Ref. CT-CE2019/683)es
dc.relation.ispartof6th International Conference, GSI 2023es
dc.rightsinfo:eu-repo/semantics/embargoedAccesses
dc.subjectTopology of curveses
dc.subjectSubresultantses
dc.subjectSingular pointses
dc.subject.otherCDU::6 - Ciencias aplicadas::62 - Ingeniería. Tecnologíaes
dc.titleAvoiding the general position condition whencomputing the topology of a real algebraic planecurve defined implicitlyes
dc.typeinfo:eu-repo/semantics/lecturees
dc.typeinfo:eu-repo/semantics/lecturees
dc.embargo.termsSi-
dc.identifier.doihttps://doi.org/10.1007/978-3-031-38271-0_46-
dc.contributor.departmentDepartamento de Ingeniería y Tecnología de Computadores-
Aparece en las colecciones:Ponencias y Comunicaciones

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
Avoiding the general position (versión editor).pdf194 kBAdobe PDFVista previa
Visualizar/Abrir    Solicitar una copia


Los ítems de Digitum están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.