Por favor, use este identificador para citar o enlazar este ítem:
https://doi.org/10.3390/s21113765
Twittear
Título: | S3: An AI-Enabled User Continuous Authentication for Smartphones Based on Sensors, Statistics and Speaker Information |
Fecha de publicación: | 28-may-2021 |
Editorial: | MDPI |
Cita bibliográfica: | Sensors 2021, 21, 3765 |
ISSN: | 1424-8220 |
Materias relacionadas: | CDU::6 - Ciencias aplicadas |
Palabras clave: | Continuous authentication Smartphone Sensors Applications usage Speaker recognition Artificial intelligence |
Resumen: | Continuous authentication systems have been proposed as a promising solution to au- thenticate users in smartphones in a non-intrusive way. However, current systems have important weaknesses related to the amount of data or time needed to build precise user profiles, together with high rates of false alerts. Voice is a powerful dimension for identifying subjects but its suitability and importance have not been deeply analyzed regarding its inclusion in continuous authentication systems. This work presents the S3 platform, an artificial intelligence-enabled continuous authen- tication system that combines data from sensors, applications statistics and voice to authenticate users in smartphones. Experiments have tested the relevance of each kind of data, explored different strategies to combine them, and determined how many days of training are needed to obtain good enough profiles. Results showed that voice is much more relevant than sensors and applications statistics when building a precise authenticating system, and the combination of individual models was the best strategy. Finally, the S3 platform reached a good performance with only five days of use available for training the users’ profiles. As an additional contribution, a dataset with 21 volun- teers interacting freely with their smartphones for more than sixty days has been created and made available to the community. |
Autor/es principal/es: | Espín López, Juan Manuel Huertas Celdrán, Alberto Marín-Blázquez, Javier G. Esquembre, Francisco Martínez Pérez, Gregorio |
Facultad/Departamentos/Servicios: | Facultades, Departamentos, Servicios y Escuelas::Departamentos de la UMU::Matemáticas Facultades, Departamentos, Servicios y Escuelas::Departamentos de la UMU::Ingeniería de la Información y las Comunicaciones |
Versión del editor: | https://www.mdpi.com/1424-8220/21/11/3765 |
URI: | http://hdl.handle.net/10201/137590 |
DOI: | https://doi.org/10.3390/s21113765 |
Tipo de documento: | info:eu-repo/semantics/article |
Número páginas / Extensión: | 33 |
Derechos: | info:eu-repo/semantics/openAccess Atribución 4.0 Internacional |
Descripción: | © 2021. The authors. This document is made available under the CC-BY 4.0 license http://creativecommons.org/licenses/by /4.0/ This document is the Accepted version of a Published Work that appeared in final form in Sensors. |
Aparece en las colecciones: | Artículos: Matemáticas |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2021 sensors-21-03765.pdf | 731,16 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons