Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.3390/s21113765

Título: S3: An AI-Enabled User Continuous Authentication for Smartphones Based on Sensors, Statistics and Speaker Information
Fecha de publicación: 28-may-2021
Editorial: MDPI
Cita bibliográfica: Sensors 2021, 21, 3765
ISSN: 1424-8220
Materias relacionadas: CDU::6 - Ciencias aplicadas
Palabras clave: Continuous authentication
Smartphone
Sensors
Applications usage
Speaker recognition
Artificial intelligence
Resumen: Continuous authentication systems have been proposed as a promising solution to au- thenticate users in smartphones in a non-intrusive way. However, current systems have important weaknesses related to the amount of data or time needed to build precise user profiles, together with high rates of false alerts. Voice is a powerful dimension for identifying subjects but its suitability and importance have not been deeply analyzed regarding its inclusion in continuous authentication systems. This work presents the S3 platform, an artificial intelligence-enabled continuous authen- tication system that combines data from sensors, applications statistics and voice to authenticate users in smartphones. Experiments have tested the relevance of each kind of data, explored different strategies to combine them, and determined how many days of training are needed to obtain good enough profiles. Results showed that voice is much more relevant than sensors and applications statistics when building a precise authenticating system, and the combination of individual models was the best strategy. Finally, the S3 platform reached a good performance with only five days of use available for training the users’ profiles. As an additional contribution, a dataset with 21 volun- teers interacting freely with their smartphones for more than sixty days has been created and made available to the community.
Autor/es principal/es: Espín López, Juan Manuel
Huertas Celdrán, Alberto
Marín-Blázquez, Javier G.
Esquembre, Francisco
Martínez Pérez, Gregorio
Facultad/Departamentos/Servicios: Facultades, Departamentos, Servicios y Escuelas::Departamentos de la UMU::Matemáticas
Facultades, Departamentos, Servicios y Escuelas::Departamentos de la UMU::Ingeniería de la Información y las Comunicaciones
Versión del editor: https://www.mdpi.com/1424-8220/21/11/3765
URI: http://hdl.handle.net/10201/137590
DOI: https://doi.org/10.3390/s21113765
Tipo de documento: info:eu-repo/semantics/article
Número páginas / Extensión: 33
Derechos: info:eu-repo/semantics/openAccess
Atribución 4.0 Internacional
Descripción: © 2021. The authors. This document is made available under the CC-BY 4.0 license http://creativecommons.org/licenses/by /4.0/ This document is the Accepted version of a Published Work that appeared in final form in Sensors.
Aparece en las colecciones:Artículos: Matemáticas

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
2021 sensors-21-03765.pdf731,16 kBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons