Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.3390/rs9101058

Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorGomariz Castillo, Francisco-
dc.contributor.authorAlonso Sarria, Francisco-
dc.contributor.authorCánovas García, Fulgencio-
dc.date.accessioned2024-01-15T12:15:36Z-
dc.date.available2024-01-15T12:15:36Z-
dc.date.issued2017-10-17-
dc.identifier.citationRemote Sensing, 9(10), 2017es
dc.identifier.issnElectronic: 2072-4292-
dc.identifier.urihttp://hdl.handle.net/10201/137316-
dc.description© 2017.This document is made available under the CC-BY 4.0 license http://creativecommons.org/licenses/by /4.0/ This document is the published version of a published work that appeared in final form in Remote Sensinges
dc.description.abstractThe aim of this study was to evaluate three different strategies to improve classification accuracy in a highly fragmented semiarid area using, (i) different classification algorithms with parameter optimization in some cases; (ii) different feature sets including spectral, textural and terrain features; and (iii) different seasonal combinations of images. A three-way ANOVA was used to discern which of these approaches and their interactions significantly increases accuracy. Tukey-Kramer contrast using a heteroscedasticity-consistent estimation of the kappa covariances matrix was used to check for significant differences in accuracy. The experiment was carried out with Landsat TM, ETM and OLI images corresponding to the period 2000-2015. A combination of four images using random forest and the three feature sets was the best way to improve accuracy. Maximum likelihood, random forest and support vector machines do not significantly increase accuracy when textural information was added, but do so when terrain features were taken into account. On the other hand, sequential maximum a posteriori increased accuracy when textural features were used, but reduced accuracy substantially when terrain features were included. Random forest using the three feature subsets and sequential maximum a posteriori with spectral and textural features had the largest kappa values, around 0.9.es
dc.formatapplication/pdfes
dc.format.extent23es
dc.languageenges
dc.publisherMultidisciplinary Digital Publishing Institutees
dc.relationÁmbito del proyecto: Regional. Agencia financiadora: Comunidad Autónoma de la Región de Murcia. Nombre del proyecto: Modelización Hidrológica en Zonas Semiáridas, Subproyecto: Modelización Numérica de Procesos Hidrológicos y Sistemas de Recursos Hídricoses
dc.rightsinfo:eu-repo/semantics/openAccesses
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectLand use classificationes
dc.subjectMachine learning;es
dc.subjectTextural information;es
dc.subjectContextual informationes
dc.subject.otherCDU::9 - Geografía e historiaes
dc.titleImproving Classification Accuracy of Multi-Temporal Landsat Images by Assessing the Use of Different Algorithms, Textural and Ancillary Information for a Mediterranean Semiarid Area from 2000 to 2015es
dc.typeinfo:eu-repo/semantics/articlees
dc.relation.publisherversionhttps://www.mdpi.com/2072-4292/9/10/1058#es
dc.identifier.doihttps://doi.org/10.3390/rs9101058-
dc.contributor.departmentDepartamento de Geografía-
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
2017_RemoteSensing.pdf8,97 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons