Por favor, use este identificador para citar o enlazar este ítem: https://doi.org/10.1016/j.ijforecast.2022.05.012

Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorCamacho, Maximo-
dc.contributor.authorLopez-Buenache, German-
dc.date.accessioned2024-01-11T11:42:58Z-
dc.date.available2024-01-11T11:42:58Z-
dc.date.issued2023-07-
dc.identifier.citationInternational Journal of Forecasting. Volume 39, Issue 3, July–September 2023, Pages 1205-1220es
dc.identifier.issn0169-2070-
dc.identifier.urihttp://hdl.handle.net/10201/137183-
dc.description© 2022 The Authors. Published by Elsevier B.V. on behalf of International Institute of Forecasters.This document is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ This document is the submitted version of a published work that appeared in final form in International Journal of Forecasting.es
dc.description.abstractMost economic applications rely on a large number of time series, which typically have a remarkable clustering structure and they are available over different spans. To handle these databases, we combined the expectation–maximization (EM) algorithm outlined by Stock and Watson (JBES, 2002) and the estimation algorithm for large factor models with an unknown number of group structures and unknown membership described by Ando and Bai (JAE, 2016; JASA, 2017) . Several Monte Carlo experiments demonstrated the good performance of the proposed method at determining the correct number of clusters, providing the appropriate number of group-specific factors, identifying error-free group membership, and obtaining accurate estimates of unobserved missing data. In addition, we found that our proposed method performed substantially better than the standard EM algorithm when the data had a grouped factor structure. Using the Federal Reserve Economic Data FRED-QD, our method detected two distinct groups of macroeconomic indicators comprising the real activity indicators and nominal indicators. Thus, we demonstrated the usefulness of our group-specific factor model for studies of business cycle chronology and for forecasting purposes.es
dc.formatapplication/pdfes
dc.format.extent31es
dc.languageenges
dc.publisherElsevier B.V. on behalf of International Institute of Forecasters.es
dc.relationPID2019-107192GB-I00es
dc.relation.replaceshttps://www.um.es/econometria/Maximo/articulos/MissGroup.pdfes
dc.rightsinfo:eu-repo/semantics/openAccesses
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectFactor modelses
dc.subjectBig data analysises
dc.subjectBusiness cycleses
dc.subjectMissing dataes
dc.subjectForecastinges
dc.subject.otherCDU::3 - Ciencias socialeses
dc.titleFactor models for large and incomplete data sets with unknown group structurees
dc.typeinfo:eu-repo/semantics/articlees
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0169207022000723es
dc.identifier.doihttps://doi.org/10.1016/j.ijforecast.2022.05.012-
dc.contributor.departmentDepartamento de Métodos Cuantitativos para la Economía y la Empresa-
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
MissGroup.pdf472,43 kBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons